Sweep-tracing algorithm: in silico slip crystallography and tension-compression asymmetry in BCC metals

Nicolas Bertin, L.A. Zepeda-Ruiz, V.V. Bulatov
{"title":"Sweep-tracing algorithm: in silico slip crystallography and tension-compression asymmetry in BCC metals","authors":"Nicolas Bertin,&nbsp;L.A. Zepeda-Ruiz,&nbsp;V.V. Bulatov","doi":"10.1186/s41313-021-00031-7","DOIUrl":null,"url":null,"abstract":"<div><p>Direct Molecular Dynamics (MD) simulations are being increasingly employed to model dislocation-mediated crystal plasticity with atomic resolution. Thanks to the dislocation extraction algorithm (DXA), dislocation lines can be now accurately detected and positioned in space and their Burgers vector unambiguously identified in silico, while the simulation is being performed. However, DXA extracts static snapshots of dislocation configurations that by themselves present no information on dislocation motion. Referred to as a sweep-tracing algorithm (STA), here we introduce a practical computational method to observe dislocation motion and to accurately quantify its important characteristics such as preferential slip planes (slip crystallography). STA reconnects pairs of successive snapshots extracted by DXA and computes elementary slip facets thus precisely tracing the motion of dislocation segments from one snapshot to the next. As a testbed for our new method, we apply STA to the analysis of dislocation motion in large-scale MD simulations of single crystal plasticity in BCC metals. We observe that, when the crystal is subjected to uniaxial deformation along its [001] axis, dislocation slip predominantly occurs on the {112} maximum resolved shear stress plane under tension, while in compression slip is non-crystallographic (pencil) resulting in asymmetric mechanical response. The marked contrast in the observed slip crystallography is attributed to the twinning/anti-twinning asymmetry of shears in the {112} planes relatively favoring dislocation motion in the twinning sense while hindering dislocations from moving in the anti-twinning directions.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://materialstheory.springeropen.com/counter/pdf/10.1186/s41313-021-00031-7","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-021-00031-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Direct Molecular Dynamics (MD) simulations are being increasingly employed to model dislocation-mediated crystal plasticity with atomic resolution. Thanks to the dislocation extraction algorithm (DXA), dislocation lines can be now accurately detected and positioned in space and their Burgers vector unambiguously identified in silico, while the simulation is being performed. However, DXA extracts static snapshots of dislocation configurations that by themselves present no information on dislocation motion. Referred to as a sweep-tracing algorithm (STA), here we introduce a practical computational method to observe dislocation motion and to accurately quantify its important characteristics such as preferential slip planes (slip crystallography). STA reconnects pairs of successive snapshots extracted by DXA and computes elementary slip facets thus precisely tracing the motion of dislocation segments from one snapshot to the next. As a testbed for our new method, we apply STA to the analysis of dislocation motion in large-scale MD simulations of single crystal plasticity in BCC metals. We observe that, when the crystal is subjected to uniaxial deformation along its [001] axis, dislocation slip predominantly occurs on the {112} maximum resolved shear stress plane under tension, while in compression slip is non-crystallographic (pencil) resulting in asymmetric mechanical response. The marked contrast in the observed slip crystallography is attributed to the twinning/anti-twinning asymmetry of shears in the {112} planes relatively favoring dislocation motion in the twinning sense while hindering dislocations from moving in the anti-twinning directions.

扫描示踪算法:硅滑移晶体学和BCC金属的拉压不对称
直接分子动力学(MD)模拟越来越多地用于原子分辨率的位错介导的晶体塑性模型。由于位错提取算法(DXA),现在可以准确地检测和定位位错线,并在计算机上明确地识别其汉堡向量,同时进行模拟。然而,DXA提取的位错构型的静态快照本身不提供位错运动的信息。本文介绍了一种实用的计算方法,用于观察位错运动,并精确量化其重要特征,如优先滑移面(滑移晶体学)。STA重新连接由DXA提取的连续快照对,并计算基本滑移面,从而精确地跟踪位错段从一个快照到下一个快照的运动。作为新方法的实验平台,我们将STA应用于BCC金属单晶塑性大尺度MD模拟中的位错运动分析。我们观察到,当晶体沿其[001]轴进行单轴变形时,位错滑移主要发生在拉伸下的{112}最大分解剪应力平面上,而在压缩滑移是非结晶性的(铅笔),导致不对称的力学响应。观察到的滑移晶体学上的明显对比归因于{112}平面上剪切的孪晶/反孪晶不对称,相对有利于位错在孪晶意义上的运动,而阻碍了位错在反孪晶方向上的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
期刊介绍: Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory. The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信