Shuangxia Bai, Shaomei Song, Shiyang Liang, Jianmei Wang, Bo Li, E. Neretin
{"title":"UAV maneuvering decision -making algorithm based on Twin Delayed Deep Deterministic Policy Gradient Algorithm","authors":"Shuangxia Bai, Shaomei Song, Shiyang Liang, Jianmei Wang, Bo Li, E. Neretin","doi":"10.37965/jait.2021.12003","DOIUrl":null,"url":null,"abstract":"Aiming at intelligent decision-making of UAV based on situation information in air combat, a novel maneuvering decision method based on deep reinforcement learning is proposed in this paper. The autonomous maneuvering model of UAV is established by Markov Decision Process. The Twin Delayed Deep Deterministic Policy Gradient(TD3) algorithm and the Deep Deterministic Policy Gradient (DDPG) algorithm in deep reinforcement learning are used to train the model, and the experimental results of the two algorithms are analyzed and compared. The simulation experiment results show that compared with the DDPG algorithm, the TD3 algorithm has stronger decision-making performance and faster convergence speed, and is more suitable forsolving combat problems. The algorithm proposed in this paper enables UAVs to autonomously make maneuvering decisions based on situation information such as position, speed, and relative azimuth, adjust their actions to approach and successfully strike the enemy, providing a new method for UAVs to make intelligent maneuvering decisions during air combat.","PeriodicalId":70996,"journal":{"name":"人工智能技术学报(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"人工智能技术学报(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.37965/jait.2021.12003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Aiming at intelligent decision-making of UAV based on situation information in air combat, a novel maneuvering decision method based on deep reinforcement learning is proposed in this paper. The autonomous maneuvering model of UAV is established by Markov Decision Process. The Twin Delayed Deep Deterministic Policy Gradient(TD3) algorithm and the Deep Deterministic Policy Gradient (DDPG) algorithm in deep reinforcement learning are used to train the model, and the experimental results of the two algorithms are analyzed and compared. The simulation experiment results show that compared with the DDPG algorithm, the TD3 algorithm has stronger decision-making performance and faster convergence speed, and is more suitable forsolving combat problems. The algorithm proposed in this paper enables UAVs to autonomously make maneuvering decisions based on situation information such as position, speed, and relative azimuth, adjust their actions to approach and successfully strike the enemy, providing a new method for UAVs to make intelligent maneuvering decisions during air combat.