A note on numerical radius and the Krein-Lin inequality

Q4 Mathematics
S. Dragomir
{"title":"A note on numerical radius and the Krein-Lin inequality","authors":"S. Dragomir","doi":"10.24193/MATHCLUJ.2018.2.06","DOIUrl":null,"url":null,"abstract":"In this note we show that the Kre¼¬n-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert space due to C. Pearcy.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/MATHCLUJ.2018.2.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

In this note we show that the Kre¼¬n-Lin triangle inequality can be naturally applied to obtain an elegant reverse for a classical numerical radius power inequality for bounded linear operators on complex Hilbert space due to C. Pearcy.
关于数值半径和Krein-Lin不等式的一个注记
在本文中,我们证明了Kre¼n-Lin三角不等式可以自然地应用于复杂Hilbert空间上有界线性算子的经典数值半径幂不等式的优雅逆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信