Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves

IF 1.4 4区 数学 Q1 MATHEMATICS
A. Bondal, I. Zhdanovskiy
{"title":"Theory of homotopes with applications to mutually unbiased bases, harmonic analysis on graphs, and perverse sheaves","authors":"A. Bondal, I. Zhdanovskiy","doi":"10.1070/RM9983","DOIUrl":null,"url":null,"abstract":"This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued -structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.","PeriodicalId":49582,"journal":{"name":"Russian Mathematical Surveys","volume":"76 1","pages":"195 - 259"},"PeriodicalIF":1.4000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Mathematical Surveys","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1070/RM9983","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

This paper is a survey of contemporary results and applications of the theory of homotopes. The notion of a well-tempered element of an associative algebra is introduced, and it is proved that the category of representations of the homotope constructed by a well-tempered element is the heart of a suitably glued -structure. The Hochschild and global dimensions of homotopes are calculated in the case of well-tempered elements. The homotopes constructed from generalized Laplace operators in Poincaré groupoids of graphs are studied. It is shown that they are quotients of Temperley–Lieb algebras of general graphs. The perverse sheaves on a punctured disc and on a 2-dimensional sphere with a double point are identified with representations of suitable homotopes. Relations of the theory to orthogonal decompositions of the Lie algebras into a sum of Cartan subalgebras, to classifications of configurations of lines, to mutually unbiased bases, to quantum protocols, and to generalized Hadamard matrices are discussed. Bibliography: 56 titles.
同伦理论及其在互无偏基上的应用,图上的调和分析,和反常束
本文综述了同伦理论的最新研究成果和应用。引入了结合代数中良调元的概念,并证明了良调元构造的同伦的表示范畴是适当胶合结构的核心。在匀质元的情况下,计算了同伦的Hochschild维和全局维。研究了由广义拉普拉斯算子构造的图的poincarcars群拟同伦。证明它们是一般图的Temperley-Lieb代数的商。用合适的同伦表示来识别穿孔圆盘上和具有双点的二维球面上的反常轴。讨论了李代数正交分解成Cartan子代数和、直线组形的分类、互无偏基、量子协议和广义Hadamard矩阵的关系。参考书目:56种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Russian Mathematical Surveys is a high-prestige journal covering a wide area of mathematics. The Russian original is rigorously refereed in Russia and the translations are carefully scrutinised and edited by the London Mathematical Society. The survey articles on current trends in mathematics are generally written by leading experts in the field at the request of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信