{"title":"On Degenerate 3-(α, δ)-Sasakian Manifolds","authors":"Oliver Goertsches, Leon Roschig, Leander Stecker","doi":"10.1515/coma-2021-0142","DOIUrl":null,"url":null,"abstract":"Abstract We propose a new method to construct degenerate 3-(α, δ)-Sasakian manifolds as fiber products of Boothby-Wang bundles over hyperkähler manifolds. Subsequently, we study homogeneous degenerate 3-(α, δ)-Sasakian manifolds and prove that no non-trivial compact examples exist aswell as that there is exactly one family of nilpotent Lie groups with this geometry, the quaternionic Heisenberg groups.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"337 - 344"},"PeriodicalIF":0.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We propose a new method to construct degenerate 3-(α, δ)-Sasakian manifolds as fiber products of Boothby-Wang bundles over hyperkähler manifolds. Subsequently, we study homogeneous degenerate 3-(α, δ)-Sasakian manifolds and prove that no non-trivial compact examples exist aswell as that there is exactly one family of nilpotent Lie groups with this geometry, the quaternionic Heisenberg groups.
期刊介绍:
Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.