The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method
IF 1.3
Q3 ENGINEERING, CHEMICAL
Z. Shnain, M. Toma, Basheer A. Abdulhussein, N. J. Saleh, M. Ibrahim, Nerran Manuel, Abbner Mahmood
求助PDF
{"title":"The Effect of Solvent-Modification on the Physicochemical Properties of ZnO Nanoparticles Synthesized by Sol-Gel Method","authors":"Z. Shnain, M. Toma, Basheer A. Abdulhussein, N. J. Saleh, M. Ibrahim, Nerran Manuel, Abbner Mahmood","doi":"10.9767/bcrec.17.1.12345.46-52","DOIUrl":null,"url":null,"abstract":"This study investigated the solvent effect on the synthesis of Zinc Oxide (ZnO) nanoparticle using sol-gel method. Zinc acetate dihydrate and oxalic acid were used as a chemical precursor for the synthesis of the ZnO nanoparticle considering the effects of various solvents. The effect of using water, propanol, or ethanol as solvent during the synthesis were examined. The resultant gel in the aqueous and organic moderate solvent was thermally cracked into ZnO nanoparticles at 450 °C under atmospheric pressure. The results showed that the solvent type has a significant effect on the morphology and particles size of the ZnO nanoparticles synthesized. Atomic Force Microscopy (AFM) was used to investigate the microstructure of the nanoparticles. The crystalline and chemical structure of the prepared ZnO nanoparticle were studied by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). The average diameter of nano-size particles obtained for ethanol, propanol and water are 79.55 nm, 83.86 nm and 85.59 nm, respectively. ZnO particles showed higher degree of crystalline in water compared to other solvents under current investigation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). ","PeriodicalId":46276,"journal":{"name":"Bulletin of Chemical Reaction Engineering and Catalysis","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Chemical Reaction Engineering and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9767/bcrec.17.1.12345.46-52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2
引用
批量引用
Abstract
This study investigated the solvent effect on the synthesis of Zinc Oxide (ZnO) nanoparticle using sol-gel method. Zinc acetate dihydrate and oxalic acid were used as a chemical precursor for the synthesis of the ZnO nanoparticle considering the effects of various solvents. The effect of using water, propanol, or ethanol as solvent during the synthesis were examined. The resultant gel in the aqueous and organic moderate solvent was thermally cracked into ZnO nanoparticles at 450 °C under atmospheric pressure. The results showed that the solvent type has a significant effect on the morphology and particles size of the ZnO nanoparticles synthesized. Atomic Force Microscopy (AFM) was used to investigate the microstructure of the nanoparticles. The crystalline and chemical structure of the prepared ZnO nanoparticle were studied by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). The average diameter of nano-size particles obtained for ethanol, propanol and water are 79.55 nm, 83.86 nm and 85.59 nm, respectively. ZnO particles showed higher degree of crystalline in water compared to other solvents under current investigation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
溶剂改性对溶胶-凝胶法制备ZnO纳米颗粒理化性质的影响
研究了溶胶-凝胶法制备氧化锌纳米粒子的溶剂效应。考虑不同溶剂的影响,以二水合乙酸锌和草酸为化学前驱体合成ZnO纳米颗粒。考察了水、丙醇、乙醇等溶剂对合成效果的影响。在450℃的常压下,将凝胶在水溶剂和有机中等溶剂中热裂解成ZnO纳米颗粒。结果表明,溶剂类型对合成的ZnO纳米粒子的形貌和粒径有显著影响。利用原子力显微镜(AFM)研究了纳米颗粒的微观结构。利用x射线衍射(XRD)和傅里叶变换红外光谱(FTIR)对制备的ZnO纳米颗粒的晶体结构和化学结构进行了研究。乙醇、丙醇和水的平均粒径分别为79.55 nm、83.86 nm和85.59 nm。氧化锌颗粒在水中的结晶度高于目前研究的其他溶剂。版权所有©2021作者,BCREC集团出版。这是一篇基于CC BY-SA许可(https://creativecommons.org/licenses/by-sa/4.0)的开放获取文章。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Bulletin of Chemical Reaction Engineering & Catalysis, a reputable international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics, and chemical reaction engineering. Scientific articles dealing with the following topics in chemical reaction engineering, catalysis science and engineering, catalyst preparation method and characterization, novel innovation of chemical reactor, kinetic studies, etc. are particularly welcome. However, articles concerned on general chemical engineering process are not covered and out of scope of this journal