Generalized Covariance Estimator

IF 2.9 2区 数学 Q1 ECONOMICS
C. Gouriéroux, J. Jasiak
{"title":"Generalized Covariance Estimator","authors":"C. Gouriéroux, J. Jasiak","doi":"10.1080/07350015.2022.2120486","DOIUrl":null,"url":null,"abstract":"ABSTRACT We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.","PeriodicalId":50247,"journal":{"name":"Journal of Business & Economic Statistics","volume":"41 1","pages":"1315 - 1327"},"PeriodicalIF":2.9000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Business & Economic Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2120486","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT We consider a class of semi-parametric dynamic models with iid errors, including the nonlinear mixed causal-noncausal Vector Autoregressive (VAR), Double-Autoregressive (DAR) and stochastic volatility models. To estimate the parameters characterizing the (nonlinear) serial dependence, we introduce a generic Generalized Covariance (GCov) estimator, which minimizes a residual-based multivariate portmanteau statistic. In comparison to the standard methods of moments, the GCov estimator has an interpretable objective function, circumvents the inversion of high-dimensional matrices, and achieves semi-parametric efficiency in one step. We derive the asymptotic properties of the GCov estimator and show its semi-parametric efficiency. We also prove that the associated residual-based portmanteau statistic is asymptotically chi-square distributed. The finite sample performance of the GCov estimator is illustrated in a simulation study. The estimator is then applied to a dynamic model of commodity futures.
广义协方差估计
摘要考虑了一类具有iid误差的半参数动态模型,包括非线性混合因果-非因果向量自回归(VAR)、双自回归(DAR)和随机波动模型。为了估计表征(非线性)序列相关性的参数,我们引入了一个通用的广义协方差(GCov)估计量,它最小化了基于残差的多元组合统计量。与矩量的标准方法相比,GCov估计器具有可解释的目标函数,避免了高维矩阵的反演,一步实现了半参数效率。我们得到了GCov估计量的渐近性质,并证明了它的半参数有效性。我们还证明了相关残差组合统计量是渐近卡方分布。通过仿真研究说明了GCov估计器的有限样本性能。然后将该估计量应用于商品期货的动态模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Business & Economic Statistics
Journal of Business & Economic Statistics 数学-统计学与概率论
CiteScore
5.00
自引率
6.70%
发文量
98
审稿时长
>12 weeks
期刊介绍: The Journal of Business and Economic Statistics (JBES) publishes a range of articles, primarily applied statistical analyses of microeconomic, macroeconomic, forecasting, business, and finance related topics. More general papers in statistics, econometrics, computation, simulation, or graphics are also appropriate if they are immediately applicable to the journal''s general topics of interest. Articles published in JBES contain significant results, high-quality methodological content, excellent exposition, and usually include a substantive empirical application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信