Giuseppe Tanzella Nitti, G. Lacidogna, A. Carpinteri
{"title":"An analytical formulation to evaluate natural frequencies and mode shapes of high-rise buildings","authors":"Giuseppe Tanzella Nitti, G. Lacidogna, A. Carpinteri","doi":"10.1515/cls-2021-0025","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an original analytical formulation to evaluate the natural frequencies and mode shapes of high-rise buildings is proposed. The methodology is intended to be used by engineers in the preliminary design phases as it allows the evaluation of the dynamic response of high-rise buildings consisting of thin-walled closed- or open-section shear walls, frames, framed tubes, and dia-grid systems. If thin-walled open-section shear walls are present, the stiffness matrix of the element is evaluated considering Vlasov’s theory. Using the procedure called General Algorithm, which allows to assemble the stiffness matrices of the individual vertical bracing elements, it is possible to model the structure as a single equivalent cantilever beam. Furthermore, the degrees of freedom of the structural system are reduced to only three per floor: two translations in the x and y directions and a rigid rotation of the floor around the vertical axis of the building. This results in a drastic reduction in calculation times compared to those necessary to carry out the same analysis using commercial software that implements Finite Element models. The potential of the proposed method is confirmed by a numerical example, which demonstrates the benefits of this procedure.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":"8 1","pages":"307 - 318"},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract In this paper, an original analytical formulation to evaluate the natural frequencies and mode shapes of high-rise buildings is proposed. The methodology is intended to be used by engineers in the preliminary design phases as it allows the evaluation of the dynamic response of high-rise buildings consisting of thin-walled closed- or open-section shear walls, frames, framed tubes, and dia-grid systems. If thin-walled open-section shear walls are present, the stiffness matrix of the element is evaluated considering Vlasov’s theory. Using the procedure called General Algorithm, which allows to assemble the stiffness matrices of the individual vertical bracing elements, it is possible to model the structure as a single equivalent cantilever beam. Furthermore, the degrees of freedom of the structural system are reduced to only three per floor: two translations in the x and y directions and a rigid rotation of the floor around the vertical axis of the building. This results in a drastic reduction in calculation times compared to those necessary to carry out the same analysis using commercial software that implements Finite Element models. The potential of the proposed method is confirmed by a numerical example, which demonstrates the benefits of this procedure.
期刊介绍:
The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.