Michael C. Burroughs, Yuan-Yin Zhang, A. Shetty, Christopher M. Bates, M. Helgeson, L. Leal
{"title":"Flow-concentration coupling determines features of nonhomogeneous flow and shear banding in entangled polymer solutions","authors":"Michael C. Burroughs, Yuan-Yin Zhang, A. Shetty, Christopher M. Bates, M. Helgeson, L. Leal","doi":"10.1122/8.0000469","DOIUrl":null,"url":null,"abstract":"Shear banding in entangled polymer solutions is an elusive phenomenon in polymer rheology. One recently proposed mechanism for the existence of banded velocity profiles in entangled polymer solutions stems from a coupling of the flow to banded concentration profiles. Recent work [Burroughs et al., Phys. Rev. Lett . 126, 207801 (2021)] provided experimental evidence for the development of large gradients in concentration across the fluid. Here, a more systematic investigation is reported of the transient and steady-state banded velocity and concentration profiles of entangled polybutadiene in dioctyl phthalate solutions as a function of temperature [Formula: see text], number of entanglements ([Formula: see text]), and applied shear rate ([Formula: see text]), which control the susceptibility of the fluid to unstable flow-concentration coupling. The results are compared to a two-fluid model that accounts for coupling between elastic and osmotic polymer stresses, and a strong agreement is found between model predictions and measured concentration profiles. The interface locations and widths of the time-averaged, steady-state velocity profiles are quantified from high-order numerical derivatives of the data. At high levels of entanglement and large [Formula: see text], a significant wall slip is observed at both inner and outer surfaces of the flow geometry but is not a necessary criterion for a nonhomogeneous flow. Furthermore, the transient evolution of flow profiles for large Z indicate transitions from curved to “stair-stepped” and, ultimately, a banded steady state. These observed transitions provide detailed evidence for shear-induced demixing as a mechanism of shear banding in polymer solutions.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000469","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2
Abstract
Shear banding in entangled polymer solutions is an elusive phenomenon in polymer rheology. One recently proposed mechanism for the existence of banded velocity profiles in entangled polymer solutions stems from a coupling of the flow to banded concentration profiles. Recent work [Burroughs et al., Phys. Rev. Lett . 126, 207801 (2021)] provided experimental evidence for the development of large gradients in concentration across the fluid. Here, a more systematic investigation is reported of the transient and steady-state banded velocity and concentration profiles of entangled polybutadiene in dioctyl phthalate solutions as a function of temperature [Formula: see text], number of entanglements ([Formula: see text]), and applied shear rate ([Formula: see text]), which control the susceptibility of the fluid to unstable flow-concentration coupling. The results are compared to a two-fluid model that accounts for coupling between elastic and osmotic polymer stresses, and a strong agreement is found between model predictions and measured concentration profiles. The interface locations and widths of the time-averaged, steady-state velocity profiles are quantified from high-order numerical derivatives of the data. At high levels of entanglement and large [Formula: see text], a significant wall slip is observed at both inner and outer surfaces of the flow geometry but is not a necessary criterion for a nonhomogeneous flow. Furthermore, the transient evolution of flow profiles for large Z indicate transitions from curved to “stair-stepped” and, ultimately, a banded steady state. These observed transitions provide detailed evidence for shear-induced demixing as a mechanism of shear banding in polymer solutions.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.