Almost Kenmotsu Manifolds Admitting Certain Critical Metric

IF 0.4 Q4 MATHEMATICS
D. Dey
{"title":"Almost Kenmotsu Manifolds Admitting Certain Critical Metric","authors":"D. Dey","doi":"10.1080/1726037X.2022.2142356","DOIUrl":null,"url":null,"abstract":"Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.","PeriodicalId":42788,"journal":{"name":"Journal of Dynamical Systems and Geometric Theories","volume":"20 1","pages":"299 - 309"},"PeriodicalIF":0.4000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamical Systems and Geometric Theories","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1726037X.2022.2142356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The object of this offering article is to introduce the notion of *- Miao-Tam critical equation on almost contact metric manifolds and it is studied on almost Kenmotsu manifolds with some nullity condition. It is proved that if the metric of a (2n + 1)-dimensional (k, µ) ! -almost Kenmotsu manifold (M, g) satisfies the *-Miao-Tam critical equation, then the manifold (M, g) is *-Ricci flat and locally isometric to a product space. Finally, the result is verified by an example.
几乎Kenmotsu流形允许某些临界度量
摘要本文的目的是在几乎接触度量流形上引入*- Miao-Tam临界方程的概念,并研究了具有一定零条件的几乎Kenmotsu流形上的临界方程。证明了如果(2n + 1)维度规(k,µ)!-几乎Kenmotsu流形(M, g)满足*-Miao-Tam临界方程,则流形(M, g)是*-Ricci平坦且局部等距于积空间。最后,通过算例验证了结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信