Matrix Analysis for Continuous-Time Markov Chains

IF 0.8 Q2 MATHEMATICS
H. Le, M. Tsatsomeros
{"title":"Matrix Analysis for Continuous-Time Markov Chains","authors":"H. Le, M. Tsatsomeros","doi":"10.1515/spma-2021-0157","DOIUrl":null,"url":null,"abstract":"Abstract Continuous-time Markov chains have transition matrices that vary continuously in time. Classical theory of nonnegative matrices, M-matrices and matrix exponentials is used in the literature to study their dynamics, probability distributions and other stochastic properties. For the benefit of Perron-Frobenius cognoscentes, this theory is surveyed and further adapted to study continuous-time Markov chains on finite state spaces.","PeriodicalId":43276,"journal":{"name":"Special Matrices","volume":"10 1","pages":"219 - 233"},"PeriodicalIF":0.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Matrices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/spma-2021-0157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Continuous-time Markov chains have transition matrices that vary continuously in time. Classical theory of nonnegative matrices, M-matrices and matrix exponentials is used in the literature to study their dynamics, probability distributions and other stochastic properties. For the benefit of Perron-Frobenius cognoscentes, this theory is surveyed and further adapted to study continuous-time Markov chains on finite state spaces.
连续时间马尔可夫链的矩阵分析
连续时间马尔可夫链具有随时间连续变化的转移矩阵。经典的非负矩阵、m矩阵和矩阵指数理论在文献中被用来研究它们的动力学、概率分布和其他随机性质。为了使Perron-Frobenius专家受益,我们对这一理论进行了研究,并将其进一步应用于有限状态空间上的连续时间马尔可夫链的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Special Matrices
Special Matrices MATHEMATICS-
CiteScore
1.10
自引率
20.00%
发文量
14
审稿时长
8 weeks
期刊介绍: Special Matrices publishes original articles of wide significance and originality in all areas of research involving structured matrices present in various branches of pure and applied mathematics and their noteworthy applications in physics, engineering, and other sciences. Special Matrices provides a hub for all researchers working across structured matrices to present their discoveries, and to be a forum for the discussion of the important issues in this vibrant area of matrix theory. Special Matrices brings together in one place major contributions to structured matrices and their applications. All the manuscripts are considered by originality, scientific importance and interest to a general mathematical audience. The journal also provides secure archiving by De Gruyter and the independent archiving service Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信