Stationarity against integration in the autoregressive process with polynomial trend

Pub Date : 2018-07-30 DOI:10.19195/0208-4147.38.1.1
F. Proïa
{"title":"Stationarity against integration in the autoregressive process with polynomial trend","authors":"F. Proïa","doi":"10.19195/0208-4147.38.1.1","DOIUrl":null,"url":null,"abstract":"We tackle the stationarity issue of an autoregressive path with a polynomial trend, and generalize some aspects of the LMC test, the testing procedure of Leybourne and McCabe. First, we show that it is possible to get the asymptotic distribution of the test statistic under the null hypothesis of trend-stationarity as well as under the alternative of nonstationarity for any polynomial trend of order r. Then, we explain the reason why the LMC test, and by extension the KPSS test, does not reject the null hypothesis of trend-stationarity, mistakenly, when the random walk is generated by a unit root located at −1.We also observe it on simulated data and correct the procedure. Finally, we describe some useful stochastic processes that appear in our limiting distributions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.19195/0208-4147.38.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We tackle the stationarity issue of an autoregressive path with a polynomial trend, and generalize some aspects of the LMC test, the testing procedure of Leybourne and McCabe. First, we show that it is possible to get the asymptotic distribution of the test statistic under the null hypothesis of trend-stationarity as well as under the alternative of nonstationarity for any polynomial trend of order r. Then, we explain the reason why the LMC test, and by extension the KPSS test, does not reject the null hypothesis of trend-stationarity, mistakenly, when the random walk is generated by a unit root located at −1.We also observe it on simulated data and correct the procedure. Finally, we describe some useful stochastic processes that appear in our limiting distributions.
分享
查看原文
多项式趋势自回归过程的抗积分平稳性
我们解决了多项式趋势的自回归路径的平稳性问题,并推广了LMC检验的一些方面,Leybourne和McCabe的检验过程。首先,我们证明了对于任何r阶的多项式趋势,在趋势平稳性的零假设下,以及在非平稳性的替代下,检验统计量的渐近分布都是可能的。然后,我们解释了为什么当随机漫步由位于- 1的单位根产生时,LMC检验以及通过扩展的KPSS检验错误地没有拒绝趋势平稳性的零假设。在模拟数据上进行了观察,并对程序进行了修正。最后,我们描述了出现在极限分布中的一些有用的随机过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信