{"title":"Trends in the development of discriminating between Angelica L. species using advanced DNA barcoding techniques","authors":"Shin-Woo Lee, Yong-wook Shin, Yun-Hee Kim","doi":"10.5010/jpb.2021.48.3.131","DOIUrl":null,"url":null,"abstract":"We reviewed current research trends for discriminating between species of the Angelica genus, a group of important medicinal plants registered in South Korea, China, and Japan. Since the registered species for medicinal purposes differ by country, they are often adulterated as well as mixed in commercial markets. Several DNA technologies have been applied to distinguish between species. However, one of the restrictions is insufficient single-nucleotide pol-ymorphisms (SNPs) within the target DNA fragments; in particular, among closely-related species. Recently, amplification refractory mutation system (ARMS)-PCR and high-resolution melting (HRM) curve analysis techniques have been developed to solve such a problem. We applied both technologies, and found they were able to discriminate several lines of Angelica genus, including A. gigas Nakai, A. gigas Jiri, A. sinensis , A. acutiloba Kitag, and Levisticum officinale . Furthermore, although the ITS region differs only by one SNP between A. gigas Nakai and A. gigas Jiri, both HRM and ARMS-PCR techniques were powerful enough to discriminate between them. Since both A. gigas Nakai and A. gigas Jiri are native species to South Korea and are very closely related, they are difficult to discriminate by their morphological characteristics. For practical applications of these technologies, further research is necessary with various materials, such as dried or processed materials (jam, jelly, juice, medicinal decoctions, etc.) in commercial markets.","PeriodicalId":16797,"journal":{"name":"Journal of Plant Biotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5010/jpb.2021.48.3.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
We reviewed current research trends for discriminating between species of the Angelica genus, a group of important medicinal plants registered in South Korea, China, and Japan. Since the registered species for medicinal purposes differ by country, they are often adulterated as well as mixed in commercial markets. Several DNA technologies have been applied to distinguish between species. However, one of the restrictions is insufficient single-nucleotide pol-ymorphisms (SNPs) within the target DNA fragments; in particular, among closely-related species. Recently, amplification refractory mutation system (ARMS)-PCR and high-resolution melting (HRM) curve analysis techniques have been developed to solve such a problem. We applied both technologies, and found they were able to discriminate several lines of Angelica genus, including A. gigas Nakai, A. gigas Jiri, A. sinensis , A. acutiloba Kitag, and Levisticum officinale . Furthermore, although the ITS region differs only by one SNP between A. gigas Nakai and A. gigas Jiri, both HRM and ARMS-PCR techniques were powerful enough to discriminate between them. Since both A. gigas Nakai and A. gigas Jiri are native species to South Korea and are very closely related, they are difficult to discriminate by their morphological characteristics. For practical applications of these technologies, further research is necessary with various materials, such as dried or processed materials (jam, jelly, juice, medicinal decoctions, etc.) in commercial markets.
期刊介绍:
Journal of Plant Biotechnology (JPB) is an international open access journal published four issues of a yearly volume on March 31, June 30, September 30, and December 31 by The Korean Society for Plant Biotechnology (KSPBT) founded in 1973. JPB publishes original, peer-reviewed articles dealing with advanced scientific aspects of plant biotechnology, which includes molecular biology, genetics, genomics, proteomics, and metabolomics. JPB does not exclude studies on lower plants including algae and cyanobacteria if studies are carried out within the aspects described above.