Limiting distribution of extremal eigenvalues of d-dimensional random Schrodinger operator

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
Kaito Kawaai, Yugo Maruyama, F. Nakano
{"title":"Limiting distribution of extremal eigenvalues of d-dimensional random Schrodinger operator","authors":"Kaito Kawaai, Yugo Maruyama, F. Nakano","doi":"10.1142/S0129055X22500416","DOIUrl":null,"url":null,"abstract":"We consider Schr\\\"odinger operator with random decaying potential on $\\ell^2 ({\\bf Z}^d)$ and showed that, (i) IDS coincides with that of free Laplacian in general cases, and (ii) the set of extremal eigenvalues, after rescaling, converges to a inhomogeneous Poisson process, under certain condition on the single-site distribution, and (iii) there are\"border-line\"cases, such that we have Poisson statistics in the sense of (ii) above if the potential does not decay, while we do not if the potential does decay.","PeriodicalId":54483,"journal":{"name":"Reviews in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/S0129055X22500416","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

Abstract

We consider Schr\"odinger operator with random decaying potential on $\ell^2 ({\bf Z}^d)$ and showed that, (i) IDS coincides with that of free Laplacian in general cases, and (ii) the set of extremal eigenvalues, after rescaling, converges to a inhomogeneous Poisson process, under certain condition on the single-site distribution, and (iii) there are"border-line"cases, such that we have Poisson statistics in the sense of (ii) above if the potential does not decay, while we do not if the potential does decay.
d维随机薛定谔算子极值特征值的极限分布
我们考虑$\ell^2({\bf Z}^d)$上具有随机衰减势的Schr“odinger算子,并证明,(i)IDS在一般情况下与自由拉普拉斯算子的IDS一致,(ii)极值特征值集在重新缩放后,在单点分布的特定条件下收敛于非齐次泊松过程,以及(iii)存在“边界线”“情况下,如果势没有衰减,我们就有上面(ii)意义上的泊松统计,而如果势确实衰减,我们没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reviews in Mathematical Physics
Reviews in Mathematical Physics 物理-物理:数学物理
CiteScore
3.00
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: Reviews in Mathematical Physics fills the need for a review journal in the field, but also accepts original research papers of high quality. The review papers - introductory and survey papers - are of relevance not only to mathematical physicists, but also to mathematicians and theoretical physicists interested in interdisciplinary topics. Original research papers are not subject to page limitations provided they are of importance to this readership. It is desirable that such papers have an expository part understandable to a wider readership than experts. Papers with the character of a scientific letter are usually not suitable for RMP.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信