A computational fluid dynamics study of flame gas sampling in horizontal dilution tubes

IF 2.8 Q2 MECHANICS
H. Mätzing, P. Vlavakis, D. Trimis, D. Stapf
{"title":"A computational fluid dynamics study of flame gas sampling in horizontal dilution tubes","authors":"H. Mätzing, P. Vlavakis, D. Trimis, D. Stapf","doi":"10.1017/flo.2022.10","DOIUrl":null,"url":null,"abstract":"Abstract The performance of horizontal dilution tubes is investigated by Reynolds-averaged Navier–Stokes and large-eddy simulations. The flame gas enters the dilution tube through a pinhole. The orifice flow and the dilution process inside the tube are studied. The volume flow through the orifice is shown to be proportional to the square root of the pressure drop. The discharge coefficient is 0.9 ± 0.3 in the cold air (calibration) case and drops to 0.35 under hot (flame) conditions. The resulting dilution ratio is roughly a factor of five below typical literature data. The gas sample remains in the wall boundary layer and the mixing process is not complete at the end of the dilution tube. Turbulence decays rapidly behind the tube inlet, which shifts the flow into the laminar to turbulent transition regime. Turbulence increases significantly in the outlet section which has much smaller pipe cross-sections. Despite its relatively low Reynolds number, the outlet flow to the particle sizer (or to the gas analyzer) is clearly turbulent, and interactions with the wall are probable. The results are in agreement with previous findings from laminar jets in cross-flow. Guidelines for optimization of the sampling conditions are suggested.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2022.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The performance of horizontal dilution tubes is investigated by Reynolds-averaged Navier–Stokes and large-eddy simulations. The flame gas enters the dilution tube through a pinhole. The orifice flow and the dilution process inside the tube are studied. The volume flow through the orifice is shown to be proportional to the square root of the pressure drop. The discharge coefficient is 0.9 ± 0.3 in the cold air (calibration) case and drops to 0.35 under hot (flame) conditions. The resulting dilution ratio is roughly a factor of five below typical literature data. The gas sample remains in the wall boundary layer and the mixing process is not complete at the end of the dilution tube. Turbulence decays rapidly behind the tube inlet, which shifts the flow into the laminar to turbulent transition regime. Turbulence increases significantly in the outlet section which has much smaller pipe cross-sections. Despite its relatively low Reynolds number, the outlet flow to the particle sizer (or to the gas analyzer) is clearly turbulent, and interactions with the wall are probable. The results are in agreement with previous findings from laminar jets in cross-flow. Guidelines for optimization of the sampling conditions are suggested.
水平稀释管火焰气体取样的计算流体力学研究
摘要采用reynolds -average Navier-Stokes和大涡模拟方法研究了水平稀释管的性能。火焰气体通过针孔进入稀释管。研究了孔板流动和管内稀释过程。通过孔板的体积流量与压降的平方根成正比。在冷空气(校准)情况下,放电系数为0.9±0.3,在热(火焰)条件下降至0.35。得到的稀释率大约是典型文献数据的五倍。气体样品停留在壁面边界层中,稀释管末端的混合过程未完成。湍流在管道入口后迅速衰减,使气流进入层流到湍流的过渡状态。在管道截面小得多的出口段湍流度明显增加。尽管雷诺数相对较低,但通往粒度仪(或气体分析仪)的出口流动明显是湍流的,并且可能与壁面相互作用。结果与先前层流射流在横流中的研究结果一致。提出了优化采样条件的准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信