Embedding ℚ into a finitely presented group

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
James M. Belk, J. Hyde, Francesco Matucci
{"title":"Embedding ℚ into a finitely presented group","authors":"James M. Belk, J. Hyde, Francesco Matucci","doi":"10.1090/bull/1762","DOIUrl":null,"url":null,"abstract":"<p>We observe that the group of all lifts of elements of Thompson’s group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper T\">\n <mml:semantics>\n <mml:mi>T</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">T</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to the real line is finitely presented and contains the additive group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of the rational numbers. This gives an explicit realization of the Higman embedding theorem for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, answering a Kourovka notebook question of Martin Bridson and Pierre de la Harpe.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/bull/1762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

We observe that the group of all lifts of elements of Thompson’s group  T T to the real line is finitely presented and contains the additive group  Q \mathbb {Q} of the rational numbers. This gives an explicit realization of the Higman embedding theorem for  Q \mathbb {Q} , answering a Kourovka notebook question of Martin Bridson and Pierre de la Harpe.

将π嵌入到有限表示群中
我们观察到Thompson群T的元素到实数的所有提升的群是有限的,并且包含有理数的加法群Q\mathbb{Q}。这给出了Q\mathbb{Q}的Higman嵌入定理的显式实现,回答了Martin Bridson和Pierre de la Harpe的Kourovka笔记本问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信