Bayesian VARs and prior calibration in times of COVID-19

IF 0.7 4区 经济学 Q3 ECONOMICS
Benny Hartwig
{"title":"Bayesian VARs and prior calibration in times of COVID-19","authors":"Benny Hartwig","doi":"10.2139/ssrn.3792070","DOIUrl":null,"url":null,"abstract":"Abstract This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a rare event rather than a persistent increase in macroeconomic volatility. For forecasting, the choice among outlier-robust error structures is less important, however, when a large cross-section of information is used. Besides the error structure, this paper shows that the standard Minnesota prior calibration is an important source of changing macroeconomic transmission channels during the pandemic, altering the predictability of real and nominal variables. To alleviate this sensitivity, an outlier-robust prior calibration is proposed.","PeriodicalId":46709,"journal":{"name":"Studies in Nonlinear Dynamics and Econometrics","volume":"0 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Nonlinear Dynamics and Econometrics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.2139/ssrn.3792070","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 11

Abstract

Abstract This paper investigates the ability of several generalized Bayesian vector autoregressions to cope with the extreme COVID-19 observations and discusses their impact on prior calibration for inference and forecasting purposes. It shows that the preferred model interprets the pandemic episode as a rare event rather than a persistent increase in macroeconomic volatility. For forecasting, the choice among outlier-robust error structures is less important, however, when a large cross-section of information is used. Besides the error structure, this paper shows that the standard Minnesota prior calibration is an important source of changing macroeconomic transmission channels during the pandemic, altering the predictability of real and nominal variables. To alleviate this sensitivity, an outlier-robust prior calibration is proposed.
在COVID-19时期的贝叶斯var和先验校准
摘要本文研究了几种广义贝叶斯向量自回归处理极端新冠肺炎观测的能力,并讨论了它们对推理和预测目的的先验校准的影响。它表明,首选模型将疫情事件解释为罕见事件,而不是宏观经济波动的持续增加。然而,对于预测,当使用大横截面的信息时,在异常值鲁棒误差结构之间的选择就不那么重要了。除了误差结构外,本文还表明,标准的明尼苏达先验校准是疫情期间宏观经济传播渠道变化的重要来源,改变了实际和名义变量的可预测性。为了减轻这种敏感性,提出了一种异常值鲁棒先验校准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
34
期刊介绍: Studies in Nonlinear Dynamics & Econometrics (SNDE) recognizes that advances in statistics and dynamical systems theory may increase our understanding of economic and financial markets. The journal seeks both theoretical and applied papers that characterize and motivate nonlinear phenomena. Researchers are required to assist replication of empirical results by providing copies of data and programs online. Algorithms and rapid communications are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信