Spin injection, relaxation, and manipulation in GaN-based semiconductors

IF 7.7 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zhenhao Sun, N. Tang, Shixiong Zhang, Shuai Chen, Xingchen Liu, B. Shen
{"title":"Spin injection, relaxation, and manipulation in GaN-based semiconductors","authors":"Zhenhao Sun, N. Tang, Shixiong Zhang, Shuai Chen, Xingchen Liu, B. Shen","doi":"10.1080/23746149.2022.2158757","DOIUrl":null,"url":null,"abstract":"ABSTRACT GaN-based semiconductors are deemed to be a potential candidate for developing spintronic devices owing to the artificially controllable spin-orbit coupling and the high Curie temperature of GaN-based diluted magnetic semiconductors. Spin injection, spin relaxation dynamics, and spin manipulation are the key issues in the development of GaN-based spintronic devices, which have been reviewed in this article. In the end, a brief section presents the research progress of GaN-based spintronic devices. Graphical Abstract","PeriodicalId":7374,"journal":{"name":"Advances in Physics: X","volume":" ","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics: X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/23746149.2022.2158757","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT GaN-based semiconductors are deemed to be a potential candidate for developing spintronic devices owing to the artificially controllable spin-orbit coupling and the high Curie temperature of GaN-based diluted magnetic semiconductors. Spin injection, spin relaxation dynamics, and spin manipulation are the key issues in the development of GaN-based spintronic devices, which have been reviewed in this article. In the end, a brief section presents the research progress of GaN-based spintronic devices. Graphical Abstract
氮化镓基半导体中的自旋注入、弛豫和操纵
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Physics: X
Advances in Physics: X Physics and Astronomy-General Physics and Astronomy
CiteScore
13.60
自引率
0.00%
发文量
37
审稿时长
13 weeks
期刊介绍: Advances in Physics: X is a fully open-access journal that promotes the centrality of physics and physical measurement to modern science and technology. Advances in Physics: X aims to demonstrate the interconnectivity of physics, meaning the intellectual relationships that exist between one branch of physics and another, as well as the influence of physics across (hence the “X”) traditional boundaries into other disciplines including: Chemistry Materials Science Engineering Biology Medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信