Detecting changes in the structural behaviour of a laboratory bridge model using the contact-point response of a passing vehicle

IF 3 Q2 ENGINEERING, CIVIL
R. Corbally, A. Malekjafarian
{"title":"Detecting changes in the structural behaviour of a laboratory bridge model using the contact-point response of a passing vehicle","authors":"R. Corbally, A. Malekjafarian","doi":"10.1080/24705314.2023.2230399","DOIUrl":null,"url":null,"abstract":"ABSTRACT Drive-by bridge condition monitoring, using in-vehicle sensors to monitor bridges, represents a potential solution for network-scale monitoring of bridge structures. This paper presents a proof of concept for using the vehicle contact-point (CP) response for drive-by condition monitoring of bridges. An expression is presented which allows the vibration response at the point of contact between the tyre and the bridge surface to be inferred from the in-vehicle measurements. Following a simple numerical demonstration of the concept, laboratory tests are undertaken to verify that the CP response can be used to detect the fundamental frequency of the bridge. Results show that the CP response can be used to identify the bridge frequency with greater certainty than the signals measured directly on the vehicle. It is also shown, for two simulated damage cases, that changes in bridge frequency can be detected. The CP response is seen to be more sensitive to changes in bridge frequency than the measured signals. It is also observed that the detected frequency is sensitive to the vehicle speed and mass, which is an important consideration when combining results from multiple vehicle passages. Overall, the results verify that the CP response can be used to enhance drive-by bridge monitoring regimes.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2023.2230399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Drive-by bridge condition monitoring, using in-vehicle sensors to monitor bridges, represents a potential solution for network-scale monitoring of bridge structures. This paper presents a proof of concept for using the vehicle contact-point (CP) response for drive-by condition monitoring of bridges. An expression is presented which allows the vibration response at the point of contact between the tyre and the bridge surface to be inferred from the in-vehicle measurements. Following a simple numerical demonstration of the concept, laboratory tests are undertaken to verify that the CP response can be used to detect the fundamental frequency of the bridge. Results show that the CP response can be used to identify the bridge frequency with greater certainty than the signals measured directly on the vehicle. It is also shown, for two simulated damage cases, that changes in bridge frequency can be detected. The CP response is seen to be more sensitive to changes in bridge frequency than the measured signals. It is also observed that the detected frequency is sensitive to the vehicle speed and mass, which is an important consideration when combining results from multiple vehicle passages. Overall, the results verify that the CP response can be used to enhance drive-by bridge monitoring regimes.
利用过往车辆的接触点响应检测实验室桥梁模型结构性能的变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
9.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信