Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs

IF 0.6 Q3 MATHEMATICS
F. S. Mousavi, M. Noori
{"title":"Adjacent vertex distinguishing acyclic edge coloring of the Cartesian product of graphs","authors":"F. S. Mousavi, M. Noori","doi":"10.22108/TOC.2017.20988","DOIUrl":null,"url":null,"abstract":"‎Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an‎ ‎acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors‎. ‎We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$‎. ‎We also determine‎ ‎exact value of this parameter for the Cartesian product of two paths‎, ‎Cartesian product of a path and a cycle‎, ‎Cartesian product of two trees‎, ‎hypercubes‎. ‎We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$‎. ‎Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"19-30"},"PeriodicalIF":0.6000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

‎Let $G$ be a graph and $chi^{prime}_{aa}(G)$ denotes the minimum number of colors required for an‎ ‎acyclic edge coloring of $G$ in which no two adjacent vertices are incident to edges colored with the same set of colors‎. ‎We prove a general bound for $chi^{prime}_{aa}(Gsquare H)$ for any two graphs $G$ and $H$‎. ‎We also determine‎ ‎exact value of this parameter for the Cartesian product of two paths‎, ‎Cartesian product of a path and a cycle‎, ‎Cartesian product of two trees‎, ‎hypercubes‎. ‎We show that $chi^{prime}_{aa}(C_msquare C_n)$ is at most $6$ fo every $mgeq 3$ and $ngeq 3$‎. ‎Moreover in some cases we find the exact value of $chi^{prime}_{aa}(C_msquare C_n)$‎.
图的笛卡尔积的无环边着色的邻顶点区分
设$G$是一个图,$chi^{素数}_{aa}(G)$表示$G$的无环边着色所需的最小颜色数,其中没有两个相邻的顶点与用相同颜色集着色的边相关联。对于任意两个图$G$和$H$,我们证明了$chi^{素数}_{aa}(gsquared H)$的一般界。我们还确定了两条路径的笛卡尔积、一条路径与一个环的笛卡尔积、两棵树的笛卡尔积、超立方体的这个参数的精确值。我们证明了$chi^{素数}_{aa}(c_msquared C_n)$对于每个$ mgeq3 $和$ ngeq3 $ $最多是$6$。此外,在某些情况下,我们找到了$chi^{素数}_{aa}(c_msquared C_n)$ _的确切值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信