G. Sen, Aditi Sharma, Saptarshi Ghosh, Santanu Das
{"title":"A wide inter-absorption dual-transmission dual-polarized frequency selective rasorber based on SRRs","authors":"G. Sen, Aditi Sharma, Saptarshi Ghosh, Santanu Das","doi":"10.1080/02726343.2022.2118428","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this letter, a dual-polarized dual-transmission frequency selective rasorber (FSR) geometry is demonstrated. The top layer of the FSR is built of a cross-dipole design loaded with chip resistors for obtaining a wideband absorption. In addition, two different split ring resonator patterns are printed at each side of the substrate connected by metallized vias to achieve two in-band transmission responses. The bottom layer is designed from a slot geometry to exhibit two transmission bands similar to that of the top layer. The overall FSR structure exhibits a −10 dB reflection response ranging from 2.0 GHz to 8.15 GHz (having a fractional bandwidth of 121%), with transmission peaks appearing at 4.2 GHz and 6.2 GHz having insertion losses of 2.3 dB and 2.9 dB, respectively. The unit cell topology is miniaturized with dimensions of 0.1λL×0.1λL, λL being the free space wavelength at the lowest operating frequency. The proposed FSR also satisfies polarization-insensitive characteristic and angular stability behavior for differentmodes. The working principle behind such wideband absorption and in-band transmission phenomena are analyzed and an equivalent circuit model is presented. A prototype of the proposed FSR is manufactured and measured, confirming the simulated responses.","PeriodicalId":50542,"journal":{"name":"Electromagnetics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02726343.2022.2118428","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT In this letter, a dual-polarized dual-transmission frequency selective rasorber (FSR) geometry is demonstrated. The top layer of the FSR is built of a cross-dipole design loaded with chip resistors for obtaining a wideband absorption. In addition, two different split ring resonator patterns are printed at each side of the substrate connected by metallized vias to achieve two in-band transmission responses. The bottom layer is designed from a slot geometry to exhibit two transmission bands similar to that of the top layer. The overall FSR structure exhibits a −10 dB reflection response ranging from 2.0 GHz to 8.15 GHz (having a fractional bandwidth of 121%), with transmission peaks appearing at 4.2 GHz and 6.2 GHz having insertion losses of 2.3 dB and 2.9 dB, respectively. The unit cell topology is miniaturized with dimensions of 0.1λL×0.1λL, λL being the free space wavelength at the lowest operating frequency. The proposed FSR also satisfies polarization-insensitive characteristic and angular stability behavior for differentmodes. The working principle behind such wideband absorption and in-band transmission phenomena are analyzed and an equivalent circuit model is presented. A prototype of the proposed FSR is manufactured and measured, confirming the simulated responses.
期刊介绍:
Publishing eight times per year, Electromagnetics offers refereed papers that span the entire broad field of electromagnetics and serves as an exceptional reference source of permanent archival value. Included in this wide ranging scope of materials are developments in electromagnetic theory, high frequency techniques, antennas and randomes, arrays, numerical techniques, scattering and diffraction, materials, and printed circuits. The journal also serves as a forum for deliberations on innovations in the field. Additionally, special issues give more in-depth coverage to topics of immediate importance.
All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. Submissions can be made via email or postal mail.