{"title":"Multi-Aspect Understanding with Cooperative Graph Attention Networks for Medical Dialogue Information Extraction","authors":"Rui Lin, Jing Fan, Haifeng Wu","doi":"10.1145/3620675","DOIUrl":null,"url":null,"abstract":"Medical dialogue information extraction is an important but challenge task for Electronic Medical Records. Existing medical information extraction methods ignore the crucial information of sentence and multi-level dependency in dialogue, which limits their effectiveness for capturing essential medical information. To address these issues, we present a novel Multi-Aspect Understanding with Cooperative Graph Attention Networks for Medical Dialogue Information Extraction to capture multi-aspect sentence information and multi-level dependency information from the dialogue. First, we propose the multi-aspect sentence encoder to capture various features from different perspectives. Second, we propose double graph attention networks to model the dependency features from intra-window and inter-window, respectively. Extensive experiments on a benchmark dataset have well-validated the effectiveness of the proposed method.","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":" ","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3620675","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Medical dialogue information extraction is an important but challenge task for Electronic Medical Records. Existing medical information extraction methods ignore the crucial information of sentence and multi-level dependency in dialogue, which limits their effectiveness for capturing essential medical information. To address these issues, we present a novel Multi-Aspect Understanding with Cooperative Graph Attention Networks for Medical Dialogue Information Extraction to capture multi-aspect sentence information and multi-level dependency information from the dialogue. First, we propose the multi-aspect sentence encoder to capture various features from different perspectives. Second, we propose double graph attention networks to model the dependency features from intra-window and inter-window, respectively. Extensive experiments on a benchmark dataset have well-validated the effectiveness of the proposed method.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.