{"title":"Point-pushing actions for manifolds with boundary","authors":"Martin Palmer, U. Tillmann","doi":"10.4171/ggd/690","DOIUrl":null,"url":null,"abstract":"Given a manifold $M$ and a point in its interior, the point-pushing map describes a diffeomorphism that pushes the point along a closed path. This defines a homomorphism from the fundamental group of $M$ to the group of isotopy classes of diffeomorphisms of $M$ that fix the basepoint. This map is well-studied in dimension $d = 2$ and is part of the Birman exact sequence. Here we study, for any $d \\geqslant 3$ and $k \\geqslant 1$, the map from the $k$-th braid group of $M$ to the group of homotopy classes of homotopy equivalences of the $k$-punctured manifold $M \\smallsetminus z$, and analyse its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to a configuration $z$ of size $k$ in $M$ its complement, the space $M \\smallsetminus z$. Furthermore, motivated by our work on the homology of configuration-mapping spaces, we describe the action of the braid group of $M$ on the fibres of configuration-mapping spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Given a manifold $M$ and a point in its interior, the point-pushing map describes a diffeomorphism that pushes the point along a closed path. This defines a homomorphism from the fundamental group of $M$ to the group of isotopy classes of diffeomorphisms of $M$ that fix the basepoint. This map is well-studied in dimension $d = 2$ and is part of the Birman exact sequence. Here we study, for any $d \geqslant 3$ and $k \geqslant 1$, the map from the $k$-th braid group of $M$ to the group of homotopy classes of homotopy equivalences of the $k$-punctured manifold $M \smallsetminus z$, and analyse its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to a configuration $z$ of size $k$ in $M$ its complement, the space $M \smallsetminus z$. Furthermore, motivated by our work on the homology of configuration-mapping spaces, we describe the action of the braid group of $M$ on the fibres of configuration-mapping spaces.