Point-pushing actions for manifolds with boundary

Pub Date : 2020-07-22 DOI:10.4171/ggd/690
Martin Palmer, U. Tillmann
{"title":"Point-pushing actions for manifolds with boundary","authors":"Martin Palmer, U. Tillmann","doi":"10.4171/ggd/690","DOIUrl":null,"url":null,"abstract":"Given a manifold $M$ and a point in its interior, the point-pushing map describes a diffeomorphism that pushes the point along a closed path. This defines a homomorphism from the fundamental group of $M$ to the group of isotopy classes of diffeomorphisms of $M$ that fix the basepoint. This map is well-studied in dimension $d = 2$ and is part of the Birman exact sequence. Here we study, for any $d \\geqslant 3$ and $k \\geqslant 1$, the map from the $k$-th braid group of $M$ to the group of homotopy classes of homotopy equivalences of the $k$-punctured manifold $M \\smallsetminus z$, and analyse its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to a configuration $z$ of size $k$ in $M$ its complement, the space $M \\smallsetminus z$. Furthermore, motivated by our work on the homology of configuration-mapping spaces, we describe the action of the braid group of $M$ on the fibres of configuration-mapping spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Given a manifold $M$ and a point in its interior, the point-pushing map describes a diffeomorphism that pushes the point along a closed path. This defines a homomorphism from the fundamental group of $M$ to the group of isotopy classes of diffeomorphisms of $M$ that fix the basepoint. This map is well-studied in dimension $d = 2$ and is part of the Birman exact sequence. Here we study, for any $d \geqslant 3$ and $k \geqslant 1$, the map from the $k$-th braid group of $M$ to the group of homotopy classes of homotopy equivalences of the $k$-punctured manifold $M \smallsetminus z$, and analyse its injectivity. Equivalently, we describe the monodromy of the universal bundle that associates to a configuration $z$ of size $k$ in $M$ its complement, the space $M \smallsetminus z$. Furthermore, motivated by our work on the homology of configuration-mapping spaces, we describe the action of the braid group of $M$ on the fibres of configuration-mapping spaces.
分享
查看原文
有边界流形的点推行为
给定一个流形$M$和它内部的一个点,点推映射描述了一个沿着闭合路径推点的微分同胚。这定义了从$M$的基本群到固定基点的$M$微分同胚的同构类的群的同态。该映射在维度$d=2$中得到了很好的研究,并且是Birman精确序列的一部分。在这里,我们研究了任何$d\geqslant 3$和$k\geqsant 1$,从$M$的第$k$个辫状群到$k$-删截流形$M\smallest-z$的同伦等价的同伦类群的映射,并分析了它的内射性。等价地,我们描述了与$M$中大小为$k$的配置$z$相关联的泛丛的单调性,它的补码是空间$M\smallest-z$。此外,受我们关于配置映射空间同源性的工作的启发,我们描述了$M$的编织群在配置映射空间的纤维上的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信