Genes clustering selection to survival prediction in breast cancer patients

Khennedy Bacule dos Santos, I. Silva, M. Curi
{"title":"Genes clustering selection to survival prediction in breast cancer patients","authors":"Khennedy Bacule dos Santos, I. Silva, M. Curi","doi":"10.59681/2175-4411.v15.iespecial.2023.1103","DOIUrl":null,"url":null,"abstract":"The risk stratification based on molecular data for predicting cancer progression or outcome is an important undertaking for supporting clinical decision making in oncology. In this work, we use Cox model and K-means to define a prognostic gene expression-based signature. Our approach reaches a better C-index (0.8341) and outperforms the Cox model by using clinical data alone (0.6348). Overall, this shows that the genetic signature found is related to the evolution of the patient's clinical condition, detecting molecular features related to prognosis in breast cancer.","PeriodicalId":91119,"journal":{"name":"Journal of health informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of health informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59681/2175-4411.v15.iespecial.2023.1103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The risk stratification based on molecular data for predicting cancer progression or outcome is an important undertaking for supporting clinical decision making in oncology. In this work, we use Cox model and K-means to define a prognostic gene expression-based signature. Our approach reaches a better C-index (0.8341) and outperforms the Cox model by using clinical data alone (0.6348). Overall, this shows that the genetic signature found is related to the evolution of the patient's clinical condition, detecting molecular features related to prognosis in breast cancer.
基因聚类选择在乳腺癌患者生存预测中的应用
基于预测癌症进展或结果的分子数据的风险分层是支持肿瘤学临床决策的重要任务。在这项工作中,我们使用Cox模型和K-means来定义基于预后基因表达的特征。通过单独使用临床数据,我们的方法达到了更好的C指数(0.8341),并优于Cox模型(0.6348)。总体而言,这表明发现的遗传特征与患者临床状况的演变有关,检测了与癌症预后相关的分子特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信