Double-frequency passive deformation sensor based on two-layer patch antenna

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
Xue Songtao, Yi Zhuoran, Liyu Xie, G. Wan
{"title":"Double-frequency passive deformation sensor based on two-layer patch antenna","authors":"Xue Songtao, Yi Zhuoran, Liyu Xie, G. Wan","doi":"10.12989/SSS.2021.27.6.969","DOIUrl":null,"url":null,"abstract":"To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of a monolithic stressed antenna, this paper presents an unstressed deformation sensor based on two-layer patch antenna for structural health monitoring. The proposed sensor is composed of a monolithic patch antenna and a stacked patch generating two fundamental resonant frequencies within a 3-to-7 GHz band. The resonant frequencies' shifts caused by the offset of the stacked patch were selected as the sensing parameters. An equivalent circuit was used to analyze the sensing method, which shows the relative displacement to be linear to the shift of resonant frequencies. This phenomenon was then checked by numerical simulation using the Ansoft High Frequency Structure Simulator 15 (HFSS15) and experiments in laboratory using both wired and wireless setups. Furthermore, the accuracy of measurement is verified to be increased by combining two resonant frequencies.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.27.6.969","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

Abstract

To avoid the issues of incomplete strain transfer ratio and insufficient bonding strength of a monolithic stressed antenna, this paper presents an unstressed deformation sensor based on two-layer patch antenna for structural health monitoring. The proposed sensor is composed of a monolithic patch antenna and a stacked patch generating two fundamental resonant frequencies within a 3-to-7 GHz band. The resonant frequencies' shifts caused by the offset of the stacked patch were selected as the sensing parameters. An equivalent circuit was used to analyze the sensing method, which shows the relative displacement to be linear to the shift of resonant frequencies. This phenomenon was then checked by numerical simulation using the Ansoft High Frequency Structure Simulator 15 (HFSS15) and experiments in laboratory using both wired and wireless setups. Furthermore, the accuracy of measurement is verified to be increased by combining two resonant frequencies.
基于双层贴片天线的双频无源变形传感器
为了避免单片应力天线应变传递比不完全和结合强度不足的问题,提出了一种基于双层贴片天线的结构健康监测无应力变形传感器。该传感器由单片贴片天线和叠加贴片组成,在3 ~ 7 GHz频段内产生两个基本谐振频率。选取叠加贴片偏移引起的谐振频率偏移作为传感参数。利用等效电路对传感方法进行了分析,结果表明,相对位移与谐振频率的位移呈线性关系。然后使用Ansoft高频结构模拟器15 (HFSS15)进行数值模拟,并使用有线和无线设置在实验室进行实验。此外,还验证了两个谐振频率组合可以提高测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信