The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses

Pub Date : 2021-07-20 DOI:10.1214/23-ecp523
L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin
{"title":"The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses","authors":"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin","doi":"10.1214/23-ecp523","DOIUrl":null,"url":null,"abstract":"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.
分享
查看原文
Foata-Fuchs对Cayley公式的证明,以及它的概率应用
由Foata和Fuchs(1970)给出了Cayley公式的一个非常简单的双射证明。当通过概率透镜观察时,这种双射是非常有用的;我们解释了它可以用来推导具有给定度的随机树(包括随机d元树)的概率恒等式、边界和生长过程的一些方法。我们还引入了有根树度序列上的一个偏序,并推测它在给定度的随机有根树的高度上诱导了一个随机偏序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信