L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin
{"title":"The Foata–Fuchs proof of Cayley’s formula, and its probabilistic uses","authors":"L. Addario-Berry, Serte Donderwinkel, M. Maazoun, James Martin","doi":"10.1214/23-ecp523","DOIUrl":null,"url":null,"abstract":"We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We present a very simple bijective proof of Cayley's formula due to Foata and Fuchs (1970). This bijection turns out to be very useful when seen through a probabilistic lens; we explain some of the ways in which it can be used to derive probabilistic identities, bounds, and growth procedures for random trees with given degrees, including random d-ary trees. We also introduce a partial order on the degree sequences of rooted trees, and conjecture that it induces a stochastic partial order on heights of random rooted trees with given degrees.