On the skew spectral moments of graphs

IF 0.6 Q3 MATHEMATICS
F. Taghvaee, G. Fath-Tabar
{"title":"On the skew spectral moments of graphs","authors":"F. Taghvaee, G. Fath-Tabar","doi":"10.22108/TOC.2017.20737","DOIUrl":null,"url":null,"abstract":"Let $G$ be a simple graph‎, ‎and $G^{sigma}$‎ ‎be an oriented graph of $G$ with the orientation ‎$sigma$ and skew-adjacency matrix $S(G^{sigma})$‎. ‎The $k-$th skew spectral‎ ‎moment of $G^{sigma}$‎, ‎denoted by‎ ‎$T_k(G^{sigma})$‎, ‎is defined as $sum_{i=1}^{n}( ‎‎‎lambda_{i})^{k}$‎, ‎where $lambda_{1}‎, ‎lambda_{2},cdots‎, ‎lambda_{n}$ are the eigenvalues of $G^{sigma}$‎. ‎Suppose‎ ‎$G^{sigma_1}_{1}$ and $G^{sigma_2}_{2}$ are two digraphs‎. ‎If there‎ ‎exists an integer $k$‎, ‎$1 leq k leq n-1$‎, ‎such that for each‎ ‎$i$‎, ‎$0 leq i leq k-1$‎, ‎$T_i(G^{sigma_1}_{1}) =‎ ‎T_i(G^{sigma_2}_{2})$ and‎ ‎$T_k(G^{sigma_1}_{1}) <T_k(G^{sigma_ 2}_{2})$‎ ‎then we write‎ ‎$G^{sigma_1}_{1} prec_{T} G^{sigma_2}_{2}$‎. ‎In this paper‎, ‎we determine some of the skew spectral moments of oriented graphs‎. ‎Also we order some oriented unicyclic graphs with respect to skew spectral moment‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"47-54"},"PeriodicalIF":0.6000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $G$ be a simple graph‎, ‎and $G^{sigma}$‎ ‎be an oriented graph of $G$ with the orientation ‎$sigma$ and skew-adjacency matrix $S(G^{sigma})$‎. ‎The $k-$th skew spectral‎ ‎moment of $G^{sigma}$‎, ‎denoted by‎ ‎$T_k(G^{sigma})$‎, ‎is defined as $sum_{i=1}^{n}( ‎‎‎lambda_{i})^{k}$‎, ‎where $lambda_{1}‎, ‎lambda_{2},cdots‎, ‎lambda_{n}$ are the eigenvalues of $G^{sigma}$‎. ‎Suppose‎ ‎$G^{sigma_1}_{1}$ and $G^{sigma_2}_{2}$ are two digraphs‎. ‎If there‎ ‎exists an integer $k$‎, ‎$1 leq k leq n-1$‎, ‎such that for each‎ ‎$i$‎, ‎$0 leq i leq k-1$‎, ‎$T_i(G^{sigma_1}_{1}) =‎ ‎T_i(G^{sigma_2}_{2})$ and‎ ‎$T_k(G^{sigma_1}_{1})
关于图的偏谱矩
设$G$是一个简单图,$G^{sigma}$ $是$G$的一个有向图,有向$sigma$和斜邻接矩阵$S(G^{sigma})$ $。‎的k - th美元倾斜光谱‎‎时刻$ G ^{σ}$‎‎用‎‎T_k美元(G ^{σ})$‎‎被定义为美元sum_ {i = 1} ^ {n}(‎‎‎lambda_{我})^ {k} $‎‎,美元lambda_{1}‎,‎lambda_ {2}, cdots‎,‎lambda_ {n} $的特征值是$ G ^{σ}$‎。‎假设‎‎$ G ^ {sigma_1} _{1} $和$ G ^ {sigma_2} _{2} $是两个有向图‎。‎如果‎‎存在整数k美元‎,1 leq k leq n - 1美元‎‎,每个‎‎这样我美元‎‎,0 leq我leq k - 1美元‎‎,‎T_i美元(G ^ {sigma_1} _{1}) =‎‎T_i (G ^ {sigma_2} _{2})和美元‎‎T_k美元(G ^ {sigma_1} _ {1}) < T_k (G ^ {sigma_ 2} _{2})美元‎‎然后写‎‎$ G ^ {sigma_1} _ {1} prec_ {T} G ^ {sigma_2} _{2} $‎。在本文中,我们确定了一些有向图的偏谱矩。我们还对一些关于偏谱矩的有向单环图进行了排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信