J. A. C. Rocha, S. I. Martínez, J. L. Menchaca, J. D. T. Villanueva, M. G. T. Berrones, J. P. Cobos, D. U. Agundis
{"title":"Fuzzy Rules to Improve Traffic Light Decisions in Urban Roads","authors":"J. A. C. Rocha, S. I. Martínez, J. L. Menchaca, J. D. T. Villanueva, M. G. T. Berrones, J. P. Cobos, D. U. Agundis","doi":"10.4236/jilsa.2018.102003","DOIUrl":null,"url":null,"abstract":"Many researchers around the world are looking for developing techniques or technologies that cover traditional and recent constraints in urban traffic con-trol. Normally, such traffic devices are facing with a large scale of input data when they must to response in a reliable, suitable and fast way. Because of such statement, the paper is devoted to introduce a proposal for enhancing the traffic light decisions. The principal goal is that a semaphore can provide a correct and fluent vehicular mobility. However, the traditional semaphore operative ways are outdated. We present in a previous contribution the development of a methodology capable of improving the vehicular mobility by proposing a new green light interval based on road conditions with a CBR approach. However, this proposal should include whether it is needed to modify such light duration. To do this, the paper proposes the adaptation of a fuzzy inference system helping to decide when the semaphore should try to fix the green light interval according to specific road requirements. Some experiments are conducted in a simulated environment to evaluate the pertinence of implementing a decision-making before the CBR methodology. For example, using a fuzzy inference approach the decisions of the system improve almost 18% in a set of 10,000 experiments. Finally, some conclusions are drawn to emphasize the benefits of including this technique in a methodology to implement intelligent semaphores.","PeriodicalId":69452,"journal":{"name":"智能学习系统与应用(英文)","volume":"10 1","pages":"36-45"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能学习系统与应用(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/jilsa.2018.102003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Many researchers around the world are looking for developing techniques or technologies that cover traditional and recent constraints in urban traffic con-trol. Normally, such traffic devices are facing with a large scale of input data when they must to response in a reliable, suitable and fast way. Because of such statement, the paper is devoted to introduce a proposal for enhancing the traffic light decisions. The principal goal is that a semaphore can provide a correct and fluent vehicular mobility. However, the traditional semaphore operative ways are outdated. We present in a previous contribution the development of a methodology capable of improving the vehicular mobility by proposing a new green light interval based on road conditions with a CBR approach. However, this proposal should include whether it is needed to modify such light duration. To do this, the paper proposes the adaptation of a fuzzy inference system helping to decide when the semaphore should try to fix the green light interval according to specific road requirements. Some experiments are conducted in a simulated environment to evaluate the pertinence of implementing a decision-making before the CBR methodology. For example, using a fuzzy inference approach the decisions of the system improve almost 18% in a set of 10,000 experiments. Finally, some conclusions are drawn to emphasize the benefits of including this technique in a methodology to implement intelligent semaphores.