Stack and Deal: An Efficient Algorithm for Privacy Preserving Data Publishing

Vikas Thammanna Gowda
{"title":"Stack and Deal: An Efficient Algorithm for Privacy Preserving Data Publishing","authors":"Vikas Thammanna Gowda","doi":"10.5121/CSIT.2021.111111","DOIUrl":null,"url":null,"abstract":"Although k-Anonymity is a good way to publish microdata for research purposes, it still suffers from various attacks. Hence, many refinements of k-Anonymity have been proposed such as ldiversity and t-Closeness, with t-Closeness being one of the strictest privacy models. Satisfying t-Closeness for a lower value of t may yield equivalence classes with high number of records which results in a greater information loss. For a higher value of t, equivalence classes are still prone to homogeneity, skewness, and similarity attacks. This is because equivalence classes can be formed with fewer distinct sensitive attribute values and still satisfy the constraint t. In this paper, we introduce a new algorithm that overcomes the limitations of k-Anonymity and lDiversity and yields equivalence classes of size k with greater diversity and frequency of a SA value in all the equivalence classes differ by at-most one.","PeriodicalId":72673,"journal":{"name":"Computer science & information technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer science & information technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2021.111111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although k-Anonymity is a good way to publish microdata for research purposes, it still suffers from various attacks. Hence, many refinements of k-Anonymity have been proposed such as ldiversity and t-Closeness, with t-Closeness being one of the strictest privacy models. Satisfying t-Closeness for a lower value of t may yield equivalence classes with high number of records which results in a greater information loss. For a higher value of t, equivalence classes are still prone to homogeneity, skewness, and similarity attacks. This is because equivalence classes can be formed with fewer distinct sensitive attribute values and still satisfy the constraint t. In this paper, we introduce a new algorithm that overcomes the limitations of k-Anonymity and lDiversity and yields equivalence classes of size k with greater diversity and frequency of a SA value in all the equivalence classes differ by at-most one.
Stack and Deal:一种有效的隐私保护数据发布算法
尽管k匿名是出于研究目的发布微观数据的好方法,但它仍然会受到各种攻击。因此,人们提出了许多对k-匿名性的改进,如ldiverity和t-Closeness,其中t-Closeness是最严格的隐私模型之一。对于较低的t值满足t-Closeness可能会产生具有大量记录的等价类,这会导致更大的信息损失。对于较高的t值,等价类仍然容易受到同质性、偏度和相似性攻击。这是因为等价类可以用更少的不同敏感属性值形成,并且仍然满足约束t。在本文中,我们引入了一种新的算法,该算法克服了k-匿名性和lDiversity的限制,产生了具有更大多样性的大小为k的等价类,并且在所有等价类中SA值的频率最多相差一个。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信