GIS-based approach to identifying potential heat sources for heat pumps and chillers providing district heating and cooling

Q1 Social Sciences
H. Pieper, Kertu Lepiksaar, A. Volkova
{"title":"GIS-based approach to identifying potential heat sources for heat pumps and chillers providing district heating and cooling","authors":"H. Pieper, Kertu Lepiksaar, A. Volkova","doi":"10.54337/ijsepm.7021","DOIUrl":null,"url":null,"abstract":"Geographic information system (GIS) software has been essential for visualising and determining heating and cooling requirements, sources of industrial excess heat, natural bodies of water, and municipalities. Policymakers highly encourage the use of GIS software at all administrative levels. It is expected that the heating and cooling demand will continue to increase. For a reliable heat and cooling supply, we must identify heat sources that can be used to provide heat or for removing surplus heat. We propose a method for identifying possible heat sources for large heat pumps and chillers that combines geospatial data from administrative units, industrial facilities, and natural bodies of water. Temperatures, capacities, heat source availability, as well as their proximity to areas with high demand density for heating and cooling were considered. This method was used for Estonia, Latvia and Lithuania. Excess heat from heat generation plants and industries, sewage water treatment plants, and natural heat sources such as rivers, lakes and seawater were included. The study’s findings provide an overview of possible industrial and natural heat sources, as well as their characteristics. The potential of the heat sources was analysed, quantified, and then compared to the areas of heating and cooling demand.","PeriodicalId":37803,"journal":{"name":"International Journal of Sustainable Energy Planning and Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sustainable Energy Planning and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54337/ijsepm.7021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 7

Abstract

Geographic information system (GIS) software has been essential for visualising and determining heating and cooling requirements, sources of industrial excess heat, natural bodies of water, and municipalities. Policymakers highly encourage the use of GIS software at all administrative levels. It is expected that the heating and cooling demand will continue to increase. For a reliable heat and cooling supply, we must identify heat sources that can be used to provide heat or for removing surplus heat. We propose a method for identifying possible heat sources for large heat pumps and chillers that combines geospatial data from administrative units, industrial facilities, and natural bodies of water. Temperatures, capacities, heat source availability, as well as their proximity to areas with high demand density for heating and cooling were considered. This method was used for Estonia, Latvia and Lithuania. Excess heat from heat generation plants and industries, sewage water treatment plants, and natural heat sources such as rivers, lakes and seawater were included. The study’s findings provide an overview of possible industrial and natural heat sources, as well as their characteristics. The potential of the heat sources was analysed, quantified, and then compared to the areas of heating and cooling demand.
基于GIS的方法识别提供区域供暖和制冷的热泵和冷却器的潜在热源
地理信息系统(GIS)软件对于可视化和确定供暖和制冷需求、工业余热来源、自然水体和市政当局至关重要。政策制定者高度鼓励在所有行政级别使用地理信息系统软件。预计供暖和制冷需求将继续增加。为了获得可靠的供暖和制冷供应,我们必须确定可用于提供热量或去除多余热量的热源。我们提出了一种识别大型热泵和冷却器可能热源的方法,该方法结合了来自行政单位、工业设施和自然水体的地理空间数据。考虑了温度、容量、热源可用性以及它们与供暖和制冷需求密度高的地区的接近程度。爱沙尼亚、拉脱维亚和立陶宛采用了这种方法。包括来自发电厂和工业、污水处理厂以及河流、湖泊和海水等自然热源的余热。该研究的发现概述了可能的工业和自然热源及其特征。对热源的潜力进行了分析、量化,然后与供暖和制冷需求领域进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Sustainable Energy Planning and Management
International Journal of Sustainable Energy Planning and Management Social Sciences-Geography, Planning and Development
CiteScore
7.60
自引率
0.00%
发文量
18
审稿时长
30 weeks
期刊介绍: The journal is an international interdisciplinary journal in Sustainable Energy Planning and Management combining engineering and social science within Energy System Analysis, Feasibility Studies and Public Regulation. The journal especially welcomes papers within the following three focus areas: Energy System analysis including theories, methodologies, data handling and software tools as well as specific models and analyses at local, regional, country and/or global level. Economics, Socio economics and Feasibility studies including theories and methodologies of institutional economics as well as specific feasibility studies and analyses. Public Regulation and management including theories and methodologies as well as specific analyses and proposals in the light of the implementation and transition into sustainable energy systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信