{"title":"Enhanced Photocatalytic Activity of TiO2 Thin Film Deposited by Reactive RF Sputtering under Oxygen-Rich Conditions","authors":"Takaya Ogawa, Yue Zhao, H. Okumura, K. Ishihara","doi":"10.3390/photochem2010011","DOIUrl":null,"url":null,"abstract":"TiO2 thin films are promising as photocatalysts to decompose organic compounds. In this study, TiO2 thin films were deposited by reactive radio-frequency (RF) magnetron sputtering under various flow rates of oxygen and argon gas. The results show that the photocatalytic activity decreases as the oxygen-gas ratio is increased to 30% or less, while the activity increases under oxygen-rich conditions. It was observed that the crystal structure changed from anatase to a composite of anatase and rutile, where the oxygen-gas ratio during RF sputtering is more than 40%. Interestingly, the oxygen vacancy concentration increased under oxygen-rich conditions, where the oxygen-gas ratio is more than 40%. The sample prepared under the most enriched oxygen condition, 70%, among our experiments exhibited the highest concentration of oxygen vacancy and the highest photocatalytic activity. Both the oxygen vacancies and the composite of anatase and rutile structure in the TiO2 films deposited under oxygen-rich conditions are considered responsible for the enhanced photocatalysis.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
TiO2 thin films are promising as photocatalysts to decompose organic compounds. In this study, TiO2 thin films were deposited by reactive radio-frequency (RF) magnetron sputtering under various flow rates of oxygen and argon gas. The results show that the photocatalytic activity decreases as the oxygen-gas ratio is increased to 30% or less, while the activity increases under oxygen-rich conditions. It was observed that the crystal structure changed from anatase to a composite of anatase and rutile, where the oxygen-gas ratio during RF sputtering is more than 40%. Interestingly, the oxygen vacancy concentration increased under oxygen-rich conditions, where the oxygen-gas ratio is more than 40%. The sample prepared under the most enriched oxygen condition, 70%, among our experiments exhibited the highest concentration of oxygen vacancy and the highest photocatalytic activity. Both the oxygen vacancies and the composite of anatase and rutile structure in the TiO2 films deposited under oxygen-rich conditions are considered responsible for the enhanced photocatalysis.