ON q-ANALOGUES OF ZETA FUNCTIONS OF ROOT SYSTEMS

Pub Date : 2023-01-01 DOI:10.2206/kyushujm.76.451
Masakimi Kato
{"title":"ON q-ANALOGUES OF ZETA FUNCTIONS OF ROOT SYSTEMS","authors":"Masakimi Kato","doi":"10.2206/kyushujm.76.451","DOIUrl":null,"url":null,"abstract":". Komori, Matsumoto and Tsumura introduced a zeta function ζ r ( s , (cid:49)) associated with a root system (cid:49) . In this paper, we introduce a q -analogue of this zeta function, denoted by ζ r ( s , a , (cid:49) ; q ) , and investigate its properties. We show that a ‘Weyl group symmetric’ linear combination of ζ r ( s , a , (cid:49) ; q ) can be written as a multiple integral over a torus involving functions ψ s . For positive integers k , functions ψ k can be regarded as q -analogues of the periodic Bernoulli polynomials. When (cid:49) is of type A 2 or A 3 , the linear combinations can be expressed as the functions ψ k , which are q -analogues of explicit expressions of Witten’s volume formula. We also introduce a two-parameter deformation of the zeta function ζ r ( s , (cid:49)) and study its properties. ,","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2206/kyushujm.76.451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Komori, Matsumoto and Tsumura introduced a zeta function ζ r ( s , (cid:49)) associated with a root system (cid:49) . In this paper, we introduce a q -analogue of this zeta function, denoted by ζ r ( s , a , (cid:49) ; q ) , and investigate its properties. We show that a ‘Weyl group symmetric’ linear combination of ζ r ( s , a , (cid:49) ; q ) can be written as a multiple integral over a torus involving functions ψ s . For positive integers k , functions ψ k can be regarded as q -analogues of the periodic Bernoulli polynomials. When (cid:49) is of type A 2 or A 3 , the linear combinations can be expressed as the functions ψ k , which are q -analogues of explicit expressions of Witten’s volume formula. We also introduce a two-parameter deformation of the zeta function ζ r ( s , (cid:49)) and study its properties. ,
分享
查看原文
关于根系统的ZETA函数的q-相似性
Komori、Matsumoto和Tsumura引入了与根系(cid:49)相关的ζr(s,(cid:49))函数。在本文中,我们引入了这个ζ函数的q-类似物,表示为ζr(s,a,(cid:49);q),并研究其性质。我们证明了ζr(s,a,(cid:49)的“Weyl群对称”线性组合;q)可以写成包含函数ψs的环面上的多重积分。对于正整数k,函数ψk可以看作周期伯努利多项式的q-类似物。当(cid:49)是A2或A3型时,线性组合可以表示为函数ψk,它是Witten体积公式显式表达式的q-类似物。我们还引入了ζr(s,(cid:49))的双参数变形,并研究了它的性质,
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信