Some results on the quotient of co-m modules

Q4 Mathematics
S. Rajaee
{"title":"Some results on the quotient of co-m modules","authors":"S. Rajaee","doi":"10.22124/JART.2021.18893.1254","DOIUrl":null,"url":null,"abstract":"Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. In this paper, among various results, we prove that if $M$ is a cancellation $R$-module and $L$ is a nonzero simple submodule of $M$, then $L$ is a copure submodule of $M$. Moreover, in this case, if $M$ is co-m, then $M/L$ is also a co-m $R$-module. We investigate various conditions under which the quotient module $M/N$ of a co-m $M$ is also a co-m. We prove that if $M$ is a cancellation Noetherian co-m module, then for every second submodule $N$ of $M$ the quotient module $M/N$ is a co-m $R$-module. We obtain some results concerning socle and radical of co-m modules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"9 1","pages":"79-92"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2021.18893.1254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. In this paper, among various results, we prove that if $M$ is a cancellation $R$-module and $L$ is a nonzero simple submodule of $M$, then $L$ is a copure submodule of $M$. Moreover, in this case, if $M$ is co-m, then $M/L$ is also a co-m $R$-module. We investigate various conditions under which the quotient module $M/N$ of a co-m $M$ is also a co-m. We prove that if $M$ is a cancellation Noetherian co-m module, then for every second submodule $N$ of $M$ the quotient module $M/N$ is a co-m $R$-module. We obtain some results concerning socle and radical of co-m modules.
关于co-m模商的一些结果
设$R$是具有恒等式的交换环,设$M$是酉$R$-模。在本文的各种结果中,我们证明了如果$M$是一个消去$R$-模,$L$是$M$的一个非零简单子模,那么$L$就是$M的一个copure子模。此外,在这种情况下,如果$M$是co-M,那么$M/L$也是co-M$R$-模块。我们研究了co-M$M$的商模$M/N$也是co-M的各种条件。我们证明了如果$M$是一个消去Noetherian co-M模,那么对于$M$的每第二个子模$N$,商模$M/N$是co-M$R$-模。我们得到了一些关于co-m模的socle和radical的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信