Trees with maximum sum of the two largest Laplacian eigenvalues

IF 0.7 4区 数学 Q2 Mathematics
Yirong Zheng, Jianxi Li, Sarula Chang
{"title":"Trees with maximum sum of the two largest Laplacian eigenvalues","authors":"Yirong Zheng, Jianxi Li, Sarula Chang","doi":"10.13001/ela.2022.7065","DOIUrl":null,"url":null,"abstract":"Let $T$ be a tree of order $n$ and $S_2(T)$ be the sum of the two largest Laplacian eigenvalues of $T$. Fritscher et al. proved that for any tree $T$ of order $n$, $S_2(T) \\leq n+2-\\frac{2}{n}$. Guan et al. determined the tree with maximum $S_2(T)$ among all trees of order $n$. In this paper, we characterize the trees with $S_2(T) \\geq n+1$ among all trees of order $n$ except some trees. Moreover, among all trees of order $n$, we also determine the first $\\lfloor\\frac{n-2}{2}\\rfloor$ trees according to their $S_2(T)$. This extends the result of Guan et al.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $T$ be a tree of order $n$ and $S_2(T)$ be the sum of the two largest Laplacian eigenvalues of $T$. Fritscher et al. proved that for any tree $T$ of order $n$, $S_2(T) \leq n+2-\frac{2}{n}$. Guan et al. determined the tree with maximum $S_2(T)$ among all trees of order $n$. In this paper, we characterize the trees with $S_2(T) \geq n+1$ among all trees of order $n$ except some trees. Moreover, among all trees of order $n$, we also determine the first $\lfloor\frac{n-2}{2}\rfloor$ trees according to their $S_2(T)$. This extends the result of Guan et al.
具有两个最大拉普拉斯特征值的最大和的树
设$T$是$n$阶树,$S_2(T)$是$T$的两个最大拉普拉斯特征值的和。Fritscher等人证明了对于任何$n$阶的树$T$,$S_2(T)\leq n+2-\frac{2}{n}$。Guan等人确定了在所有$n$阶树中具有最大$S_2(T)$的树。在本文中,我们刻画了除某些树之外的所有$n$阶树中具有$S_2(T)\geqn+1$的树。此外,在所有$n$阶的树中,我们还根据它们的$S_2(T)$来确定第一个$\lfloor\frac{n-2}{2}\lfloor$树。这扩展了Guan等人的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信