Álvaro Moneo, M. Fernanda N. N. Carvalho, João P. Telo
{"title":"Charge localization in bis(dioxaborine) radical anions","authors":"Álvaro Moneo, M. Fernanda N. N. Carvalho, João P. Telo","doi":"10.1002/poc.4562","DOIUrl":null,"url":null,"abstract":"<p>The mixed valence (MV) radical anions of several bis(dioxaborines) with aromatic bridges of different length were studied by Vis/NIR spectroscopy, cyclic voltammetry, and theoretical calculations. The phenyl-bridged (<b>1</b>), the biphenyl-bridged (<b>2</b>), and bithiophene-bridged (<b>5</b>) radical anions show intense low-energy intervalence bands with vibrational structure typical of charge delocalized mixed valence species in the range of solvents studied. However, by subtracting from the experimental spectra of <b>2</b><sup>−</sup> in MeCN the fraction corresponding to the delocalized part (taken as the spectrum in tetrahydrofuran [THF]), we get a localized charge-transfer bands that show a significant cutoff effect at the low-energy side, as predicted by classical Marcus–Hush theory. In the radical anions with three aromatic rings on the bridge, the localization of the charge changes with solvent. These radicals are predominantly charge-localized in the high <i>λ</i><sub><i>S</i></sub> solvent MeCN, charge-delocalized in the low <i>λ</i><sub><i>S</i></sub> solvent THF, and show both type of intervalence bands in DMF. Experimental results and theoretical calculations show that the electronic coupling between dioxaborine units in these three-ring bridged radical anions increases with the number of thiophene rings on the bridge.</p>","PeriodicalId":16829,"journal":{"name":"Journal of Physical Organic Chemistry","volume":"36 11","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/poc.4562","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The mixed valence (MV) radical anions of several bis(dioxaborines) with aromatic bridges of different length were studied by Vis/NIR spectroscopy, cyclic voltammetry, and theoretical calculations. The phenyl-bridged (1), the biphenyl-bridged (2), and bithiophene-bridged (5) radical anions show intense low-energy intervalence bands with vibrational structure typical of charge delocalized mixed valence species in the range of solvents studied. However, by subtracting from the experimental spectra of 2− in MeCN the fraction corresponding to the delocalized part (taken as the spectrum in tetrahydrofuran [THF]), we get a localized charge-transfer bands that show a significant cutoff effect at the low-energy side, as predicted by classical Marcus–Hush theory. In the radical anions with three aromatic rings on the bridge, the localization of the charge changes with solvent. These radicals are predominantly charge-localized in the high λS solvent MeCN, charge-delocalized in the low λS solvent THF, and show both type of intervalence bands in DMF. Experimental results and theoretical calculations show that the electronic coupling between dioxaborine units in these three-ring bridged radical anions increases with the number of thiophene rings on the bridge.
期刊介绍:
The Journal of Physical Organic Chemistry is the foremost international journal devoted to the relationship between molecular structure and chemical reactivity in organic systems. It publishes Research Articles, Reviews and Mini Reviews based on research striving to understand the principles governing chemical structures in relation to activity and transformation with physical and mathematical rigor, using results derived from experimental and computational methods. Physical Organic Chemistry is a central and fundamental field with multiple applications in fields such as molecular recognition, supramolecular chemistry, catalysis, photochemistry, biological and material sciences, nanotechnology and surface science.