Pochette surgery of 4-sphere

IF 0.7 3区 数学 Q2 MATHEMATICS
T. Uzuki, M. Angé, Matthias Aschenbrenner, Robert Lipshitz, Paul Balmer, Kefeng Liu, Paul Yang, Vyjayanthi Chari, S. Popa
{"title":"Pochette surgery of 4-sphere","authors":"T. Uzuki, M. Angé, Matthias Aschenbrenner, Robert Lipshitz, Paul Balmer, Kefeng Liu, Paul Yang, Vyjayanthi Chari, S. Popa","doi":"10.2140/pjm.2023.324.371","DOIUrl":null,"url":null,"abstract":"Iwase and Matsumoto defined `pochette surgery' as a cut-and-paste on 4-manifolds along a 4-manifold homotopy equivalent to $S^2\\vee S^1$. The first author in [10] studied infinitely many homotopy 4-spheres obtained by pochette surgery. In this paper we compute the homology of pochette surgery of any homology 4-sphere by using `linking number' of a pochette embedding. We prove that pochette surgery with the trivial cord does not change the diffeomorphism type or gives a Gluck surgery. We also show that there exist pochette surgeries on the 4-sphere with a non-trivial core sphere and a non-trivial cord such that the surgeries give the 4-sphere.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.324.371","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Iwase and Matsumoto defined `pochette surgery' as a cut-and-paste on 4-manifolds along a 4-manifold homotopy equivalent to $S^2\vee S^1$. The first author in [10] studied infinitely many homotopy 4-spheres obtained by pochette surgery. In this paper we compute the homology of pochette surgery of any homology 4-sphere by using `linking number' of a pochette embedding. We prove that pochette surgery with the trivial cord does not change the diffeomorphism type or gives a Gluck surgery. We also show that there exist pochette surgeries on the 4-sphere with a non-trivial core sphere and a non-trivial cord such that the surgeries give the 4-sphere.
4球波切特手术
Iwase和Matsumoto将“pochette外科”定义为沿着等价于$S^2 \vee S^1$的4-流形上的剪切和粘贴。第一作者在[10]中研究了通过波切特运算得到的无穷多个同伦论4-球。本文利用pochette嵌入的“连接数”计算了任意同调4球的pochette运算的同调性。我们证明了用琐碎的脊髓进行波切手术不会改变异型性类型或进行Gluck手术。我们还证明了在4球体上存在波切特手术,该手术具有非平凡的核心球体和非平凡的绳索,使得手术产生4球体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
93
审稿时长
4-8 weeks
期刊介绍: Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信