{"title":"The saturation number of c-bounded stable monomial ideals and their powers","authors":"Reza Abdolmaleki, J. Herzog, G. Zhu","doi":"10.1215/21562261-2022-0013","DOIUrl":null,"url":null,"abstract":"Let $S=K[x_1,\\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2019-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2022-0013","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Let $S=K[x_1,\ldots,x_n]$ be the polynomial ring in $n$ variables over a field $K$. In this paper, we compute the socle of $\cb$-bounded strongly stable ideals and determine that the saturation number of strongly stable ideals and of equigenerated $\cb$-bounded strongly stable ideals. We also provide explicit formulas for the saturation number $\sat(I)$ of Veronese type ideals $I$. Using this formula, we show that $\sat(I^k)$ is quasi-linear from the beginning and we determine the quasi-linear function explicitly.
期刊介绍:
The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.