{"title":"Efficient biobased oligomeric plasticizers from the renewable biomonomers, glycerol and adipic acid","authors":"B. Howell","doi":"10.1177/20412479231182700","DOIUrl":null,"url":null,"abstract":"With the recognition that traditional phthalate plasticizers readily migrate from a polymer matrix into which they have been incorporated, have become widespread environmental pollutants and pose risks to human health, the development of new, effective, nontoxic, nonmigrating plasticizers has gained urgency. A focus has been the generation of plasticizers from renewable, inexpensive, nontoxic biobased precursors. Many small molecule plasticizers have been prepared from readily-available bioprecursors. However, the most promising are branched oligomeric materials. Fully compatible oligomeric plasticizers do not migrate from a polymer matrix. Highly branched materials are effective in increasing free volume and display good plasticizing impact. Using new technology that permits the generation of hyperbranched poly(ester) without gelation and with control of molecular weight and endgroup identity, oligomeric materials have been prepared from the nontoxic biomonomers, glycerol and adipic acid. The monomers are readily available at modest cost. The oligomers may be obtained in a simple one-step process and function as very effective plasticizers for polymeric materials.","PeriodicalId":20353,"journal":{"name":"Polymers from Renewable Resources","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers from Renewable Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/20412479231182700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 4
Abstract
With the recognition that traditional phthalate plasticizers readily migrate from a polymer matrix into which they have been incorporated, have become widespread environmental pollutants and pose risks to human health, the development of new, effective, nontoxic, nonmigrating plasticizers has gained urgency. A focus has been the generation of plasticizers from renewable, inexpensive, nontoxic biobased precursors. Many small molecule plasticizers have been prepared from readily-available bioprecursors. However, the most promising are branched oligomeric materials. Fully compatible oligomeric plasticizers do not migrate from a polymer matrix. Highly branched materials are effective in increasing free volume and display good plasticizing impact. Using new technology that permits the generation of hyperbranched poly(ester) without gelation and with control of molecular weight and endgroup identity, oligomeric materials have been prepared from the nontoxic biomonomers, glycerol and adipic acid. The monomers are readily available at modest cost. The oligomers may be obtained in a simple one-step process and function as very effective plasticizers for polymeric materials.
期刊介绍:
Polymers from Renewable Resources, launched in 2010, publishes leading peer reviewed research that is focused on the development of renewable polymers and their application in the production of industrial, consumer, and medical products. The progressive decline of fossil resources, together with the ongoing increases in oil prices, has initiated an increase in the search for alternatives based on renewable resources for the production of energy. The prevalence of petroleum and carbon based chemistry for the production of organic chemical goods has generated a variety of initiatives aimed at replacing fossil sources with renewable counterparts. In particular, major efforts are being conducted in polymer science and technology to prepare macromolecular materials based on renewable resources. Also gaining momentum is the utilisation of vegetable biomass either by the separation of its components and their development or after suitable chemical modification. This journal is a valuable addition to academic, research and industrial libraries, research institutions dealing with the use of natural resources and materials science and industrial laboratories concerned with polymer science.