Turbulence anisotropy around bridge piers in seepage affected sand bed channel

IF 1.5 4区 工程技术 Q3 MECHANICS
Rutuja A Chavan, Anurag Sharma, B. Kumar
{"title":"Turbulence anisotropy around bridge piers in seepage affected sand bed channel","authors":"Rutuja A Chavan, Anurag Sharma, B. Kumar","doi":"10.1080/14685248.2021.2009843","DOIUrl":null,"url":null,"abstract":"In this work, experimental investigations have been pursued to analyse the Reynolds stress anisotropy in the flow around the bridge pier for no seepage and downward seepage. Experiments were conducted in the non-uniform sand bed channel with circular piers of 75 mm diameter. The streamwise velocity and Reynolds Shear Stress was observed to be maximum near the edge at upstream and near the bed at downstream of pier. The strength of reversal flow diminished with downward seepage. The turbulent kinetic energy at upstream of pier found to be decreased with seepage. Decreased Strouhal number with seepage indicates the diminishing strength of wake vortices. The results present the estimation of the deviation measure from the isotropic turbulence in terms of Reynolds stress tensor for whole flow depth (within and above the scour hole zone) at the upstream and downstream sections of the pier. The streamwise profile of anisotropy tensor within the scour hole zone of the upstream section demonstrates a lesser anisotropic stream in the presence of seepage flow, while transverse and vertical components of anisotropy tensor provide the higher anisotropic stream. The results are quite the opposite in the case of the downstream section of the pier. The present study also analysed the anisotropic invariant maps in terms of Lumley triangle, Eigenvalues, and the invariant functions for the whole flow depth. The anisotropic invariant maps inclining to be two-component isotropy within the scour hole zone for both the section of the pier. With the increase in flow depth that is at the edge of scour hole, the data sets of anisotropic invariant maps show a trend of one-component isotropy, while it has an affinity to develop three-component isotropy near the free surface. Invariant function measurement presents better two-component isotropy within the scour hole zone and quasi-three component isotropy in the outer zone of scour hole for the upstream section of pier. The experimental results provide a qualitative understanding of the evolution of the Reynolds stress anisotropy tensor in the pier-affected alluvial channel.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2021.2009843","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, experimental investigations have been pursued to analyse the Reynolds stress anisotropy in the flow around the bridge pier for no seepage and downward seepage. Experiments were conducted in the non-uniform sand bed channel with circular piers of 75 mm diameter. The streamwise velocity and Reynolds Shear Stress was observed to be maximum near the edge at upstream and near the bed at downstream of pier. The strength of reversal flow diminished with downward seepage. The turbulent kinetic energy at upstream of pier found to be decreased with seepage. Decreased Strouhal number with seepage indicates the diminishing strength of wake vortices. The results present the estimation of the deviation measure from the isotropic turbulence in terms of Reynolds stress tensor for whole flow depth (within and above the scour hole zone) at the upstream and downstream sections of the pier. The streamwise profile of anisotropy tensor within the scour hole zone of the upstream section demonstrates a lesser anisotropic stream in the presence of seepage flow, while transverse and vertical components of anisotropy tensor provide the higher anisotropic stream. The results are quite the opposite in the case of the downstream section of the pier. The present study also analysed the anisotropic invariant maps in terms of Lumley triangle, Eigenvalues, and the invariant functions for the whole flow depth. The anisotropic invariant maps inclining to be two-component isotropy within the scour hole zone for both the section of the pier. With the increase in flow depth that is at the edge of scour hole, the data sets of anisotropic invariant maps show a trend of one-component isotropy, while it has an affinity to develop three-component isotropy near the free surface. Invariant function measurement presents better two-component isotropy within the scour hole zone and quasi-three component isotropy in the outer zone of scour hole for the upstream section of pier. The experimental results provide a qualitative understanding of the evolution of the Reynolds stress anisotropy tensor in the pier-affected alluvial channel.
受渗流影响的沙床通道桥墩周围湍流各向异性
本文对桥墩周围无渗流和向下渗流情况下的雷诺数应力各向异性进行了试验研究。试验在直径为75 mm的圆形桥墩的非均匀砂床河道中进行。在上游桥墩边缘附近和下游桥墩床附近,沿流速度和雷诺剪应力最大。逆流强度随向下渗流而减弱。桥墩上游湍流动能随渗流而减小。随着渗流的增加,斯特罗哈尔数减小,表明尾流涡强度减小。结果给出了在桥墩上下游段全流深(冲刷孔区内及以上)下,用雷诺应力张量估计各向同性湍流的偏差量。上游段冲刷孔区各向异性张量沿流剖面在渗流作用下呈现较小的各向异性流,而各向异性张量横向和纵向分量呈现较大的各向异性流。在桥墩下游部分的情况下,结果正好相反。本文还从Lumley三角形、特征值和整个流深的不变量函数等方面分析了各向异性不变量图。各向异性不变图在冲刷孔区域内倾向于双分量各向同性。随着冲刷孔边缘流动深度的增加,各向异性不变图数据集呈现出单组分各向同性的趋势,而在自由面附近则倾向于发展三组分各向同性。不变函数测量结果表明,上游段冲刷孔区域内双分量各向同性较好,冲刷孔外区域准三分量各向同性较好。实验结果对墩影响冲积河道中雷诺应力各向异性张量的演化提供了定性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信