Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan

IF 1.9 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Zaili Tao, Jiyuan Yin, W. Xiao, R. Seltmann, Wen Chen, M. Sun, Tao Wang, C. Yuan, S. Thomson, Yuelong Chen, X. Xia
{"title":"Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan","authors":"Zaili Tao, Jiyuan Yin, W. Xiao, R. Seltmann, Wen Chen, M. Sun, Tao Wang, C. Yuan, S. Thomson, Yuelong Chen, X. Xia","doi":"10.2475/02.2022.06","DOIUrl":null,"url":null,"abstract":"Peraluminous granitoids have aluminum saturation indices (A/CNK) higher than 1.0, which overlap to some extent between S- and I-type granitoids. However, their source and petrogenesis are still disputed. For example, whole-rock compositions alone are not always a valid way to discriminate the sources of peraluminous granitoids. To identify the geochemical affinities, source and petrogenesis of the peraluminous granitoids, we present new geochemical data, in situ zircon U-Pb ages and Hf-O isotopic data, and whole-rock Sr-Nd isotopic data for the peraluminous granitoids in the South Tianshan Orogen Belt (STOB), Northwesten China. Zircon U-Pb ages suggest that these peraluminous granitoids were emplaced in the latest Carboniferous (ca. 299 Ma). They contain the diagnostic mineral muscovite and have high δ18OZrn values (>8.0 ‰) demonstrating a close affinity with S-type granitoids. Their low εNd(t) values (−5.3 to −7.6), combined with variable zircon εHf(t) values (−0.35 to −10.18), indicate that these S-type granitoids were likely derived from partial melting of metasedimentary rocks. In addition, inherited zircon cores from the S-type granitoids have variable δ18O values (6.34–10.5 ‰) and zircon εHf(t) values (−4.3 to +6.3), with age populations (ca. 400 to 500 Ma) similar to those of detrital zircons from late Carboniferous metasedimentary rocks in the region. These data show that the S-type granitoids were dominantly derived from late Carboniferous metasedimentary rocks rather than Precambrian crustal materials. The studied granitoids have a transitional composition between I- and S-type granitoids, which could be related to low compositional maturity of the late Carboniferous metasedimentary source. According to the spatial and temporal distribution and petrogenesis of the Carboniferous intrusive rocks in the STOB, we propose that a slab roll-back model can account for the generation of late Carboniferous S-type granitoids in the STOB.","PeriodicalId":7660,"journal":{"name":"American Journal of Science","volume":"322 1","pages":"280 - 312"},"PeriodicalIF":1.9000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2475/02.2022.06","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Peraluminous granitoids have aluminum saturation indices (A/CNK) higher than 1.0, which overlap to some extent between S- and I-type granitoids. However, their source and petrogenesis are still disputed. For example, whole-rock compositions alone are not always a valid way to discriminate the sources of peraluminous granitoids. To identify the geochemical affinities, source and petrogenesis of the peraluminous granitoids, we present new geochemical data, in situ zircon U-Pb ages and Hf-O isotopic data, and whole-rock Sr-Nd isotopic data for the peraluminous granitoids in the South Tianshan Orogen Belt (STOB), Northwesten China. Zircon U-Pb ages suggest that these peraluminous granitoids were emplaced in the latest Carboniferous (ca. 299 Ma). They contain the diagnostic mineral muscovite and have high δ18OZrn values (>8.0 ‰) demonstrating a close affinity with S-type granitoids. Their low εNd(t) values (−5.3 to −7.6), combined with variable zircon εHf(t) values (−0.35 to −10.18), indicate that these S-type granitoids were likely derived from partial melting of metasedimentary rocks. In addition, inherited zircon cores from the S-type granitoids have variable δ18O values (6.34–10.5 ‰) and zircon εHf(t) values (−4.3 to +6.3), with age populations (ca. 400 to 500 Ma) similar to those of detrital zircons from late Carboniferous metasedimentary rocks in the region. These data show that the S-type granitoids were dominantly derived from late Carboniferous metasedimentary rocks rather than Precambrian crustal materials. The studied granitoids have a transitional composition between I- and S-type granitoids, which could be related to low compositional maturity of the late Carboniferous metasedimentary source. According to the spatial and temporal distribution and petrogenesis of the Carboniferous intrusive rocks in the STOB, we propose that a slab roll-back model can account for the generation of late Carboniferous S-type granitoids in the STOB.
过铝质s型和i型花岗质岩浆作用风格对比:中国南天山增生史识别及其意义
过铝质花岗岩的铝饱和指数(A/CNK)高于1.0,在一定程度上与S型和I型花岗岩重叠。然而,它们的来源和岩石成因仍然存在争议。例如,单凭全岩成分并不总是区分过铝质花岗岩来源的有效方法。为了确定过铝质花岗岩类的地球化学亲缘关系、来源和岩石成因,我们提供了中国西北南天山造山带过铝质花岗岩的新的地球化学数据、原位锆石U-Pb年龄和Hf-O同位素数据以及全岩Sr-Nd同位素数据。锆石U-Pb年龄表明,这些过铝质花岗质岩石侵位于晚石炭世(约299 Ma)。它们含有诊断矿物白云母,具有高δ18OZrn值(>8.0‰),表明与S型花岗质岩石具有密切的亲和力。它们的低εNd(t)值(−5.3至−7.6),加上可变锆石εHf(t)的值(−0.35至−10.18),表明这些S型花岗岩很可能来源于变质沉积岩的部分熔融。此外,S型花岗岩的继承锆石岩芯具有可变的δ18O值(6.34–10.5‰)和锆石εHf(t)值(−4.3至+6.3),年龄群体(约400至500 Ma)与该地区晚石炭世变质沉积岩的碎屑锆石相似。这些数据表明,S型花岗岩主要来源于晚石炭世变质沉积岩,而不是前寒武纪地壳物质。所研究的花岗岩具有介于I型和S型之间的过渡成分,这可能与晚石炭世变质沉积源的成分成熟度低有关。根据STOB中石炭系侵入岩的时空分布和岩石成因,我们提出了一个板状回滚模型可以解释STOB中晚石炭世S型花岗岩的生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American Journal of Science
American Journal of Science 地学-地球科学综合
CiteScore
5.80
自引率
3.40%
发文量
17
审稿时长
>12 weeks
期刊介绍: The American Journal of Science (AJS), founded in 1818 by Benjamin Silliman, is the oldest scientific journal in the United States that has been published continuously. The Journal is devoted to geology and related sciences and publishes articles from around the world presenting results of major research from all earth sciences. Readers are primarily earth scientists in academia and government institutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信