KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE

YR VaniaRiskasari, P. Eka, Nila Kencana, I. Komang, Gde Sukarsa
{"title":"KLASIFIKASI PENYAKIT SIROSIS MENGGUNAKAN SUPPORT VECTOR MACHINE","authors":"YR VaniaRiskasari, P. Eka, Nila Kencana, I. Komang, Gde Sukarsa","doi":"10.24843/mtk.2023.v12.i02.p404","DOIUrl":null,"url":null,"abstract":"Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and 𝛾 that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and 𝛾 = 0,6 is the best model with the accuracy value of 67,86 percent.","PeriodicalId":11600,"journal":{"name":"E-Jurnal Matematika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-Jurnal Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/mtk.2023.v12.i02.p404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cirrhosis is one type of liver disease and is caused by forming fibrosis so that changes the liver structure become abnormal. Based on the presence of ascites, varicose veins, and bleeding, cirrhosis is divided into four clinical stages. This study aims to find the best classification model of cirrhosis using the support vector machine (SVM). SVM is a supervised learning method that aims to find the hyperplane with the maximum margin. In this study, the resulted model useful for determining the cirrhosis’ stage from patients. The variables to classify are age, gender, ascites status, hepatomegaly status, spiders status, edema status, total bilirubin, total cholesterol, amount of albumin, amount of copper, alkaline phosphatase level test results, SGOT test results, amount of tryglycerides, amount of platelets, and prothrombin time. By applying radial basis function kernel, combination of parameter C and 𝛾 that gives the best accuracy is determined. The final model using SVM with parameters C = 1 and 𝛾 = 0,6 is the best model with the accuracy value of 67,86 percent.
适用于向量机支持的SIROSIS-PEN分类
肝硬化是肝脏疾病的一种,由肝脏纤维化引起,使肝脏结构发生异常变化。根据腹水、静脉曲张和出血的表现,肝硬化可分为四个临床阶段。本研究旨在利用支持向量机(SVM)寻找肝硬化的最佳分类模型。支持向量机是一种监督学习方法,其目的是寻找具有最大边界的超平面。在本研究中,所得模型可用于确定患者的肝硬化分期。分类的变量有年龄、性别、腹水状态、肝肿大状态、蜘蛛状态、水肿状态、总胆红素、总胆固醇、白蛋白量、铜量、碱性磷酸酶水平试验结果、SGOT试验结果、甘油三酯量、血小板量、凝血酶原时间。采用径向基函数核,确定了参数C与的组合,得到了最佳的精度。最终采用参数C = 1, = 0,6的SVM模型为最佳模型,准确率为67.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
34
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信