Computing subalgebras and $\mathbb{Z}_2$-gradings of simple Lie algebras over finite fields

Q3 Mathematics
B. Eick, T. Moede
{"title":"Computing subalgebras and $\\mathbb{Z}_2$-gradings of simple Lie algebras over finite fields","authors":"B. Eick, T. Moede","doi":"10.46298/cm.10193","DOIUrl":null,"url":null,"abstract":"This paper introduces two new algorithms for Lie algebras over finite fields\nand applies them to the investigate the known simple Lie algebras of dimension\nat most $20$ over the field $\\mathbb{F}_2$ with two elements. The first\nalgorithm is a new approach towards the construction of $\\mathbb{Z}_2$-gradings\nof a Lie algebra over a finite field of characteristic $2$. Using this, we\nobserve that each of the known simple Lie algebras of dimension at most $20$\nover $\\mathbb{F}_2$ has a $\\mathbb{Z}_2$-grading and we determine the\nassociated simple Lie superalgebras. The second algorithm allows us to compute\nall subalgebras of a Lie algebra over a finite field. We apply this to compute\nthe subalgebras, the maximal subalgebras and the simple subquotients of the\nknown simple Lie algebras of dimension at most $16$ over $\\mathbb{F}_2$ (with\nthe exception of the $15$-dimensional Zassenhaus algebra).","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces two new algorithms for Lie algebras over finite fields and applies them to the investigate the known simple Lie algebras of dimension at most $20$ over the field $\mathbb{F}_2$ with two elements. The first algorithm is a new approach towards the construction of $\mathbb{Z}_2$-gradings of a Lie algebra over a finite field of characteristic $2$. Using this, we observe that each of the known simple Lie algebras of dimension at most $20$ over $\mathbb{F}_2$ has a $\mathbb{Z}_2$-grading and we determine the associated simple Lie superalgebras. The second algorithm allows us to compute all subalgebras of a Lie algebra over a finite field. We apply this to compute the subalgebras, the maximal subalgebras and the simple subquotients of the known simple Lie algebras of dimension at most $16$ over $\mathbb{F}_2$ (with the exception of the $15$-dimensional Zassenhaus algebra).
计算子代数和有限域上简单李代数的$\mathbb{Z}_2$-分级
本文介绍了有限域上李代数的两个新算法,并将它们应用于研究域$\mathbb上已知维数最高为$20$的单李代数{F}_2$包含两个元素。第一个算法是构造$\mathbb的一种新方法{Z}_2特征为$2$的有限域上李代数的$-阶。利用这一点,我们观察到,在$\mathbb上,每个已知的维数至多为$20$的单李代数{F}_2$有一个$\mathbb{Z}_2$-分级,我们确定了相关的简单李超代数。第二种算法允许我们在有限域上计算李代数的所有子代数。我们将其应用于计算$\mathbb上维数至多为$16$的已知单李代数的子代数、最大子代数和单商{F}_2$($15$维Zassenhaus代数除外)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信