On a front evolution problem for the multidimensional East model

IF 1.1 3区 数学 Q2 STATISTICS & PROBABILITY
Yannick Couzini'e, F. Martinelli
{"title":"On a front evolution problem for the multidimensional East model","authors":"Yannick Couzini'e, F. Martinelli","doi":"10.1214/22-EJP870","DOIUrl":null,"url":null,"abstract":"We consider a natural front evolution problem the East process on $\\mathbb{Z}^d, d\\ge 2,$ a well studied kinetically constrained model for which the facilitation mechanism is oriented along the coordinate directions, as the equilibrium density $q$ of the facilitating vertices vanishes. Starting with a unique unconstrained vertex at the origin, let $S(t)$ consist of those vertices which became unconstrained within time $t$ and, for an arbitrary positive direction $\\mathbf x,$ let $v_{\\max}(\\mathbf x),v_{\\min}(\\mathbf x )$ be the maximal/minimal velocities at which $S(t)$ grows in that direction. If $\\mathbf x$ is independent of $q$, we prove that $v_{\\max}(\\mathbf x)= v_{\\min}(\\mathbf x)^{(1+o(1))}=\\gamma(d) ^{(1+o(1))}$ as $q\\to 0$, where $\\gamma(d)$ is the spectral gap of the process on $\\mathbb{Z}^d$. We also analyse the case in which some of the coordinates of $\\mathbf x$ vanish as $q\\to 0$. In particular, for $d=2$ we prove that if $\\mathbf x$ approaches one of the two coordinate directions fast enough, then $v_{\\max}(\\mathbf x)= v_{\\min}(\\mathbf x)^{(1+o(1))}=\\gamma(1) ^{(1+o(1))}=\\gamma(d)^{d(1+o(1))},$ i.e. the growth of $S(t)$ close to the coordinate directions is dictated by the one dimensional process. As a result the region $S(t)$ becomes extremely elongated inside $\\mathbb{Z}^d_+$. We also establish mixing time cutoff for the chain in finite boxes with minimal boundary conditions. A key ingredient of our analysis is the renormalisation technique of arXiv:1404.7257 to estimate the spectral gap of the East process. Here we extend this technique to get the main asymptotics of a suitable principal Dirichlet eigenvalue of the process.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-EJP870","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a natural front evolution problem the East process on $\mathbb{Z}^d, d\ge 2,$ a well studied kinetically constrained model for which the facilitation mechanism is oriented along the coordinate directions, as the equilibrium density $q$ of the facilitating vertices vanishes. Starting with a unique unconstrained vertex at the origin, let $S(t)$ consist of those vertices which became unconstrained within time $t$ and, for an arbitrary positive direction $\mathbf x,$ let $v_{\max}(\mathbf x),v_{\min}(\mathbf x )$ be the maximal/minimal velocities at which $S(t)$ grows in that direction. If $\mathbf x$ is independent of $q$, we prove that $v_{\max}(\mathbf x)= v_{\min}(\mathbf x)^{(1+o(1))}=\gamma(d) ^{(1+o(1))}$ as $q\to 0$, where $\gamma(d)$ is the spectral gap of the process on $\mathbb{Z}^d$. We also analyse the case in which some of the coordinates of $\mathbf x$ vanish as $q\to 0$. In particular, for $d=2$ we prove that if $\mathbf x$ approaches one of the two coordinate directions fast enough, then $v_{\max}(\mathbf x)= v_{\min}(\mathbf x)^{(1+o(1))}=\gamma(1) ^{(1+o(1))}=\gamma(d)^{d(1+o(1))},$ i.e. the growth of $S(t)$ close to the coordinate directions is dictated by the one dimensional process. As a result the region $S(t)$ becomes extremely elongated inside $\mathbb{Z}^d_+$. We also establish mixing time cutoff for the chain in finite boxes with minimal boundary conditions. A key ingredient of our analysis is the renormalisation technique of arXiv:1404.7257 to estimate the spectral gap of the East process. Here we extend this technique to get the main asymptotics of a suitable principal Dirichlet eigenvalue of the process.
多维East模型的前沿演化问题
我们考虑了一个自然锋面演化问题,即$\mathbb{Z}^d, d\ge 2,$上的East过程,这是一个研究得很好的动力学约束模型,当促进顶点的平衡密度$q$消失时,促进机制沿着坐标方向定向。从原点的一个唯一的无约束顶点开始,设$S(t)$由那些在时间内变得无约束的顶点组成$t$,对于任意正方向$\mathbf x,$,设$v_{\max}(\mathbf x),v_{\min}(\mathbf x )$为$S(t)$在该方向上增长的最大/最小速度。如果$\mathbf x$独立于$q$,则证明$v_{\max}(\mathbf x)= v_{\min}(\mathbf x)^{(1+o(1))}=\gamma(d) ^{(1+o(1))}$为$q\to 0$,其中$\gamma(d)$为$\mathbb{Z}^d$上过程的谱隙。我们还分析了$\mathbf x$的一些坐标变为$q\to 0$的情况。特别是,对于$d=2$,我们证明,如果$\mathbf x$接近两个坐标方向之一的速度足够快,那么$v_{\max}(\mathbf x)= v_{\min}(\mathbf x)^{(1+o(1))}=\gamma(1) ^{(1+o(1))}=\gamma(d)^{d(1+o(1))},$,即$S(t)$接近坐标方向的增长是由一维过程决定的。因此,区域$S(t)$在$\mathbb{Z}^d_+$内部变得非常拉长。我们还建立了具有最小边界条件的有限盒链的混合时间截止。我们分析的一个关键因素是arXiv:1404.7257的重整化技术,以估计东过程的光谱间隙。在这里,我们推广了这一技术,得到了该过程的一个合适的主Dirichlet特征值的主渐近性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信