Transverse Hilbert schemes and completely integrable systems

IF 0.5 Q3 MATHEMATICS
Niccolò Lora Lamia Donin
{"title":"Transverse Hilbert schemes and completely integrable systems","authors":"Niccolò Lora Lamia Donin","doi":"10.1515/coma-2017-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper we consider a special class of completely integrable systems that arise as transverse Hilbert schemes of d points of a complex symplectic surface S projecting onto ℂ via a surjective map p which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme Sp[d] with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces and such that its characteristic polynomial is the square of its minimum polynomial and show it has the maximal number of commuting Hamiltonians.We then provide the inverse construction, starting from a 2ddimensional holomorphic integrable system W which has an endomorphism A: TW → TW satisfying the above properties and recover our initial surface S with W ≌ Sp[d].","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"4 1","pages":"263 - 272"},"PeriodicalIF":0.5000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2017-0015","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2017-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract In this paper we consider a special class of completely integrable systems that arise as transverse Hilbert schemes of d points of a complex symplectic surface S projecting onto ℂ via a surjective map p which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme Sp[d] with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces and such that its characteristic polynomial is the square of its minimum polynomial and show it has the maximal number of commuting Hamiltonians.We then provide the inverse construction, starting from a 2ddimensional holomorphic integrable system W which has an endomorphism A: TW → TW satisfying the above properties and recover our initial surface S with W ≌ Sp[d].
横向Hilbert格式与完全可积系统
摘要在本文中,我们考虑一类特殊的完全可积系统,这些系统是由复辛表面S的d点投影到ℂ 通过一个淹没在S的离散子集外的满射映射p,我们明确地赋予横向Hilbert格式Sp[d]一个辛形式和它的切线空间的自同态a。然后,我们从具有自同态a:TW的二维全纯可积系统W出发,给出了逆构造→ 满足上述性质的TW,并恢复我们的初始表面S,其中W≠Sp[d]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信