Anti-quasi-Sasakian manifolds

Pub Date : 2023-06-26 DOI:10.1007/s10455-023-09907-y
D. Di Pinto, G. Dileo
{"title":"Anti-quasi-Sasakian manifolds","authors":"D. Di Pinto,&nbsp;G. Dileo","doi":"10.1007/s10455-023-09907-y","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely Kähler almost contact metric manifolds <span>\\((M,\\varphi , \\xi ,\\eta ,g)\\)</span>, quasi-Sasakian and anti-quasi-Sasakian manifolds are characterized, respectively, by the <span>\\(\\varphi \\)</span>-invariance and the <span>\\(\\varphi \\)</span>-anti-invariance of the 2-form <span>\\(\\textrm{d}\\eta \\)</span>. A Boothby–Wang type theorem allows to obtain aqS structures on principal circle bundles over Kähler manifolds endowed with a closed (2, 0)-form. We characterize aqS manifolds with constant <span>\\(\\xi \\)</span>-sectional curvature equal to 1: they admit an <span>\\(Sp(n)\\times 1\\)</span>-reduction of the frame bundle such that the manifold is transversely hyperkähler, carrying a second aqS structure and a null Sasakian <span>\\(\\eta \\)</span>-Einstein structure. We show that aqS manifolds with constant sectional curvature are necessarily flat and cokähler. Finally, by using a metric connection with torsion, we provide a sufficient condition for an aqS manifold to be locally decomposable as the Riemannian product of a Kähler manifold and an aqS manifold with structure of maximal rank. Under the same hypothesis, (<i>M</i>, <i>g</i>) cannot be locally symmetric.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09907-y.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09907-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We introduce and study a special class of almost contact metric manifolds, which we call anti-quasi-Sasakian (aqS). Among the class of transversely Kähler almost contact metric manifolds \((M,\varphi , \xi ,\eta ,g)\), quasi-Sasakian and anti-quasi-Sasakian manifolds are characterized, respectively, by the \(\varphi \)-invariance and the \(\varphi \)-anti-invariance of the 2-form \(\textrm{d}\eta \). A Boothby–Wang type theorem allows to obtain aqS structures on principal circle bundles over Kähler manifolds endowed with a closed (2, 0)-form. We characterize aqS manifolds with constant \(\xi \)-sectional curvature equal to 1: they admit an \(Sp(n)\times 1\)-reduction of the frame bundle such that the manifold is transversely hyperkähler, carrying a second aqS structure and a null Sasakian \(\eta \)-Einstein structure. We show that aqS manifolds with constant sectional curvature are necessarily flat and cokähler. Finally, by using a metric connection with torsion, we provide a sufficient condition for an aqS manifold to be locally decomposable as the Riemannian product of a Kähler manifold and an aqS manifold with structure of maximal rank. Under the same hypothesis, (Mg) cannot be locally symmetric.

Abstract Image

分享
查看原文
Anti-quasi-Sasakian manifolds
我们引入并研究了一类特殊的几乎接触度量流形,称之为反拟Sasakian(aqS)。在一类横向Kähler几乎接触度量流形\((M,\varphi,\neneneba xi,\eta,g)\)中,准Sasakian和反准Sasakian流形分别通过2-形式\(\textrm{d}\eta\)的\(\varphi\)-不变性和\(\varphi\)反不变性来表征。Boothby–Wang型定理允许在具有闭(2,0)形式的Kähler流形上获得主圆丛上的aqS结构。我们描述了具有常数\(\neneneba xi \)-截面曲率等于1的aqS流形:它们允许框架丛的\(Sp(n)\times 1\)-归约,使得该流形是横向超kähler,带有第二个aqS结构和零Sasakian \(\eta\)-Einstein结构。我们证明了具有恒定截面曲率的aqS流形必然是平坦的和cokähler的。最后,通过使用带扭的度量连接,我们提供了一个aqS流形可局部分解为Kähler流形和具有最大秩结构的aqS流形的黎曼乘积的充分条件。在相同的假设下,(M,g)不可能是局部对称的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信