Newton polygons of Hecke operators

IF 0.5 Q3 MATHEMATICS
Liubomir Chiriac, Andrei Jorza
{"title":"Newton polygons of Hecke operators","authors":"Liubomir Chiriac,&nbsp;Andrei Jorza","doi":"10.1007/s40316-020-00149-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator <span>\\(T_2\\)</span> for all large enough weights. We first develop a formula for computing <i>p</i>-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at <span>\\(n\\le 15\\)</span>, then it agrees with the Newton polygon of <span>\\(T_2\\)</span> up to <i>n</i>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"45 2","pages":"271 - 290"},"PeriodicalIF":0.5000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40316-020-00149-z","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-020-00149-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

In this computational paper we verify a truncated version of the Buzzard–Calegari conjecture on the Newton polygon of the Hecke operator \(T_2\) for all large enough weights. We first develop a formula for computing p-adic valuations of exponential sums, which we then implement to compute 2-adic valuations of traces of Hecke operators acting on spaces of cusp forms. Finally, we verify that if Newton polygon of the Buzzard–Calegari polynomial has a vertex at \(n\le 15\), then it agrees with the Newton polygon of \(T_2\) up to n.

赫克算子的牛顿多边形
在这篇计算论文中,我们对所有足够大的权重的Hecke算子(T_2\)的牛顿多边形上的Buzzard–Calegari猜想的截断版本进行了验证。我们首先开发了一个计算指数和的p-adic估值的公式,然后实现该公式来计算作用于尖点形式空间上的Hecke算子迹的2-adic估值。最后,我们验证了如果Buzzard–Calegari多项式的牛顿多边形的顶点在\(n\le 15\)处,那么它与\(T_2\)到n的牛顿多边形一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信