Spectral distances in some sets of graphs

IF 0.6 4区 数学 Q3 MATHEMATICS
Irena M. Jovanović
{"title":"Spectral distances in some sets of graphs","authors":"Irena M. Jovanović","doi":"10.33044/revuma.1755","DOIUrl":null,"url":null,"abstract":"Some of the spectral distance related parameters (cospectrality, spectral eccentricity, and spectral diameter with respect to an arbitrary graph matrix) are determined in one particular set of graphs. According to these results, the spectral distances connected with the adjacency matrix and the corresponding distance related parameters are computed in some sets of trees. Examples are provided of graphs whose spectral distances related to the adjacency matrix, the Laplacian and the signless Laplacian matrix are mutually equal. The conjecture related to the spectral diameter of the set of connected regular graphs with respect to the adjacency matrix is disproved using graph energy.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/revuma.1755","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Some of the spectral distance related parameters (cospectrality, spectral eccentricity, and spectral diameter with respect to an arbitrary graph matrix) are determined in one particular set of graphs. According to these results, the spectral distances connected with the adjacency matrix and the corresponding distance related parameters are computed in some sets of trees. Examples are provided of graphs whose spectral distances related to the adjacency matrix, the Laplacian and the signless Laplacian matrix are mutually equal. The conjecture related to the spectral diameter of the set of connected regular graphs with respect to the adjacency matrix is disproved using graph energy.
一些图集中的谱距离
一些与光谱距离相关的参数(相对于任意图矩阵的共光谱、光谱偏心率和光谱直径)是在一组特定的图中确定的。根据这些结果,在一些树集合中计算了与邻接矩阵相关的谱距离和相应的距离相关参数。提供了与邻接矩阵、拉普拉斯矩阵和无符号拉普拉斯矩阵相关的谱距离相互相等的图的例子。利用图能量证明了连通正则图集关于邻接矩阵的谱直径的猜想是不成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信