{"title":"A Derivative-Free Characterization of the Weighted Besov Spaces","authors":"W. Pan, H. Wulan","doi":"10.1007/s10476-023-0187-5","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain a characterization of the weighted Besov space <span>\\({{\\cal B}_K}\\left( p \\right)\\)</span> for a weight function <i>K</i>, 0 < <i>p</i> < ∞, in terms of symmetric and derivative-free double integrals with the weight function <i>K</i> in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of <span>\\({{\\cal Q}_K}\\)</span> type spaces is obtained.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0187-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We obtain a characterization of the weighted Besov space \({{\cal B}_K}\left( p \right)\) for a weight function K, 0 < p < ∞, in terms of symmetric and derivative-free double integrals with the weight function K in the unit disc. As a by-product, we give a modification of the identity of Littlewood—Paley type for the Bergman space. As an application, a derivative-free characterization of \({{\cal Q}_K}\) type spaces is obtained.