Ahmad Nurul Hadi, Eddy Djauhari, Asep K. Supriatna, M. D. Johansyah
{"title":"Teknik Penentuan Solusi Sistem Persamaan Diferensial Linear Non-Homogen Orde Satu","authors":"Ahmad Nurul Hadi, Eddy Djauhari, Asep K. Supriatna, M. D. Johansyah","doi":"10.29313/JMTM.V18I1.5079","DOIUrl":null,"url":null,"abstract":"Abstrak. Penentuan solusi sistem persamaan diferensial linear non-homogen orde satu dengan koefisien konstanta, dilakukan dengan mengubah sistem persamaan tersebut menjadi persamaan diferensial linear non homogen tunggal. Dari persamaan diferensial linear non homogen tunggal tersebut kemudian dicari solusi homogennya menggunakan akar-akar karakteristiknya, dan mencari solusi partikularnya dengan metode variasi parameter. Solusi umum dari persamaan diferensial linear tersebut adalah jumlah dari solusi homogen dan solusi partikularnya. Persamaan diferensial linear tunggal tersebut berorde- , yang solusi umumnya berbentuk . Selanjutnya dicari solusi umum berebentuk yang berkaitan dengan , solusi umum berbentuk yang berkaitan dengan dan , solusi umum berbentuk yang berkaitan dengan , , dan , demikian seterusnya sampai mencari solusi umum berbentuk yang berkaitan dengan , , , , . Kumpulan solusi umum yang berbentuk merupakan solusi umum dari sistem persamaan diferensial linear non homogen orde satu tersebut.Kata kunci: Diferensial, Linear, Non-Homogen, Orde, Satu. Technical to Find The System of Linear Non-Homogen Differential Equation of First OrderAbstract. Determination of first-order non-homogeneous linear differential equation system solutions with constant coefficients, carried out by changing the system of equations into a single non-homogeneous linear differential equation. From a single non-homogeneous differential equation, a homogeneous solution is then used using its characteristic roots, and looking for a particular solution with the parameter variation method. The general solution of these linear differential equations is the number of homogeneous solutions and their particular solutions. The single linear differential equation is n-order, the solution being in the form of . Then look for a general solution in the form of related to , a general solution in the form of related to and , general solutions in the form of related to , and , and so on until looking for a general solution in the form of related to , , , ..., . A collection of general solutions in the form of , , , ..., is the general solution of the first-order non-homogeneous linear differential equation system.Keywords: Linear, Differential, First, Order, Non-Homogeneous","PeriodicalId":43733,"journal":{"name":"Matematika","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29313/JMTM.V18I1.5079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstrak. Penentuan solusi sistem persamaan diferensial linear non-homogen orde satu dengan koefisien konstanta, dilakukan dengan mengubah sistem persamaan tersebut menjadi persamaan diferensial linear non homogen tunggal. Dari persamaan diferensial linear non homogen tunggal tersebut kemudian dicari solusi homogennya menggunakan akar-akar karakteristiknya, dan mencari solusi partikularnya dengan metode variasi parameter. Solusi umum dari persamaan diferensial linear tersebut adalah jumlah dari solusi homogen dan solusi partikularnya. Persamaan diferensial linear tunggal tersebut berorde- , yang solusi umumnya berbentuk . Selanjutnya dicari solusi umum berebentuk yang berkaitan dengan , solusi umum berbentuk yang berkaitan dengan dan , solusi umum berbentuk yang berkaitan dengan , , dan , demikian seterusnya sampai mencari solusi umum berbentuk yang berkaitan dengan , , , , . Kumpulan solusi umum yang berbentuk merupakan solusi umum dari sistem persamaan diferensial linear non homogen orde satu tersebut.Kata kunci: Diferensial, Linear, Non-Homogen, Orde, Satu. Technical to Find The System of Linear Non-Homogen Differential Equation of First OrderAbstract. Determination of first-order non-homogeneous linear differential equation system solutions with constant coefficients, carried out by changing the system of equations into a single non-homogeneous linear differential equation. From a single non-homogeneous differential equation, a homogeneous solution is then used using its characteristic roots, and looking for a particular solution with the parameter variation method. The general solution of these linear differential equations is the number of homogeneous solutions and their particular solutions. The single linear differential equation is n-order, the solution being in the form of . Then look for a general solution in the form of related to , a general solution in the form of related to and , general solutions in the form of related to , and , and so on until looking for a general solution in the form of related to , , , ..., . A collection of general solutions in the form of , , , ..., is the general solution of the first-order non-homogeneous linear differential equation system.Keywords: Linear, Differential, First, Order, Non-Homogeneous
抽象。用常数系数计算出线性非均匀方程1的微分方程,将该方程转换成一个非均匀线性微分方程。从单一的非同质线性微分方程中,用其特征的根寻求同质解决方案,并使用不同参数的方法寻求分区解决方案。线性微分方程的一般解是同质解和子集解的总和。单线性微分方程是这样的,解通常是形状的。然后寻找与丹有关的共同形式的整体解决方案,与之相关的一般形式解决方案,与之相关的一般形式解决方案,等等,直到找到与……有关的共同形式解决方案。一站式的通用解决方案集是1的非均匀线性微分方程系统的共同解决方案。微分,线性,不均匀,顺序,一。技术上找到线性非均匀的系统与持续的coeffients的相同线性差分系统的确定,通过将平衡系统转换成一个单一的非同线性差分系统来实现。从一个单一的非同质性差异方程中,一个同质性解决方案随后使用它的特性根,并寻找一个与变量方法论参数相关的部分解决方案。这些线性差异等式的一般解决方案是同质解决方案及其部分解决方案的数字。单一的线性差异相等是n命令,解决方案存在于形式中。然后look for a solution in the form of相关将军,百万solution in the form of相关to and将军,将军,和相关的解决方案》没有注明,and so on,直到寻找a solution in the form of相关的将军 , , , ...,。总解决方案的集合。这是一种通用的非均匀线性差异系统的第一定律。线性,不同的,第一,秩序,非均匀的