Subgraph distributions in dense random regular graphs

IF 1.3 1区 数学 Q1 MATHEMATICS
A. Sah, Mehtaab Sawhney
{"title":"Subgraph distributions in dense random regular graphs","authors":"A. Sah, Mehtaab Sawhney","doi":"10.1112/S0010437X23007364","DOIUrl":null,"url":null,"abstract":"Given a connected graph $H$ which is not a star, we show that the number of copies of $H$ in a dense uniformly random regular graph is asymptotically Gaussian, which was not known even for $H$ being a triangle. This addresses a question of McKay from the 2010 International Congress of Mathematicians. In fact, we prove that the behavior of the variance of the number of copies of $H$ depends in a delicate manner on the occurrence and number of cycles of $3,4,5$ edges as well as paths of $3$ edges in $H$. More generally, we provide control of the asymptotic distribution of certain statistics of bounded degree which are invariant under vertex permutations, including moments of the spectrum of a random regular graph. Our techniques are based on combining complex-analytic methods due to McKay and Wormald used to enumerate regular graphs with the notion of graph factors developed by Janson in the context of studying subgraph counts in $\\mathbb {G}(n,p)$.","PeriodicalId":55232,"journal":{"name":"Compositio Mathematica","volume":"159 1","pages":"2125 - 2148"},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Compositio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/S0010437X23007364","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a connected graph $H$ which is not a star, we show that the number of copies of $H$ in a dense uniformly random regular graph is asymptotically Gaussian, which was not known even for $H$ being a triangle. This addresses a question of McKay from the 2010 International Congress of Mathematicians. In fact, we prove that the behavior of the variance of the number of copies of $H$ depends in a delicate manner on the occurrence and number of cycles of $3,4,5$ edges as well as paths of $3$ edges in $H$. More generally, we provide control of the asymptotic distribution of certain statistics of bounded degree which are invariant under vertex permutations, including moments of the spectrum of a random regular graph. Our techniques are based on combining complex-analytic methods due to McKay and Wormald used to enumerate regular graphs with the notion of graph factors developed by Janson in the context of studying subgraph counts in $\mathbb {G}(n,p)$.
密集随机正则图的子图分布
给定一个不是星的连通图$H$,我们证明了稠密一致随机正则图中$H$的拷贝数是渐近高斯的,这在$H$是三角形的情况下是未知的。这是麦凯在2010年国际数学家大会上提出的一个问题。事实上,我们证明了$H$的拷贝数的方差行为以微妙的方式取决于$3,4,5$边的出现和循环数,以及$H$中$3$边的路径。更一般地,我们提供了对某些有界度统计量的渐近分布的控制,这些统计量在顶点排列下是不变的,包括随机正则图的谱的矩。我们的技术是基于将McKay和Wormald提出的用于枚举正则图的复杂分析方法与Janson在研究$\mathbb{G}(n,p)$中的子图计数时提出的图因子概念相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Compositio Mathematica
Compositio Mathematica 数学-数学
CiteScore
2.10
自引率
0.00%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Compositio Mathematica is a prestigious, well-established journal publishing first-class research papers that traditionally focus on the mainstream of pure mathematics. Compositio Mathematica has a broad scope which includes the fields of algebra, number theory, topology, algebraic and differential geometry and global analysis. Papers on other topics are welcome if they are of broad interest. All contributions are required to meet high standards of quality and originality. The Journal has an international editorial board reflected in the journal content.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信